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Why attention?
• Long term memories - attending to memories 
‣ Dealing with gradient vanishing problem 

• Exceeding limitations of a global representation 
‣ Attending/focusing to smaller parts of data  

- patches in images 
- words or phrases in sentences 

• Decoupling representation from a problem  
‣ Different problems required different sizes of representations 

- LSTM with longer sentences requires larger vectors  

• Overcoming computational limits for visual data 
‣ Focusing only on the parts of images 
‣ Scalability independent of the size of images 

• Adds some interpretability to the models (error inspection)
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Attend to memory cells
Neural Image Caption Generation with Visual Attention

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along

Attend to parts of the image

(a) 60x60 Cluttered Translated MNIST
Model Error
FC, 2 layers (64 hiddens each) 28.96%
FC, 2 layers (256 hiddens each) 13.2%
Convolutional, 2 layers 7.83%
RAM, 4 glimpses, 12⇥ 12, 3 scales 7.1%
RAM, 6 glimpses, 12⇥ 12, 3 scales 5.88%
RAM, 8 glimpses, 12⇥ 12, 3 scales 5.23%

(b) 100x100 Cluttered Translated MNIST
Model Error
Convolutional, 2 layers 16.51%
RAM, 4 glimpses, 12⇥ 12, 4 scales 14.95%
RAM, 6 glimpses, 12⇥ 12, 4 scales 11.58%
RAM, 8 glimpses, 12⇥ 12, 4 scales 10.83%

Table 2: Classification on the Cluttered Translated MNIST dataset. FC denotes a fully-connected
network with two layers of rectifier units. The convolutional network had one layer of 8 10 ⇥ 10

filters with stride 5, followed by a fully connected layer with 256 units in the 60 ⇥ 60 case and
86 units in the 100 ⇥ 100 case with rectifiers after each layer. Instances of the attention model are
labeled with the number of glimpses, the size of the retina, and the number of scales in the retina.
All models except for the big fully connected network had roughly the same number of parameters.

Figure 3: Examples of the learned policy on 60 ⇥ 60 cluttered-translated MNIST task. Column 1:
The input image with glimpse path overlaid in green. Columns 2-7: The six glimpses the network
chooses. The center of each image shows the full resolution glimpse, the outer low resolution areas
are obtained by upscaling the low resolution glimpses back to full image size. The glimpse paths
clearly show that the learned policy avoids computation in empty or noisy parts of the input space
and directly explores the area around the object of interest.

attains a significantly lower error rate of 2.3% than the fully connected networks. However, RAM
with 4 glimpses gets roughly the same performance as the convolutional network and outperforms
it for 6 and 8 glimpses, reaching roughly 1.9% error. This is possible because the attention model
can focus its retina on the digit and hence learn a translation invariant policy. This experiment also
shows that the attention model is able to successfully search for an object in a big image when the
object is not centered.

Cluttered Non-Centered Digits: One of the most challenging aspects of classifying real-world
images is the presence of a wide range clutter. Systems that operate on the entire image at full
resolution are particularly susceptible to clutter and must learn to be invariant to it. One possible
advantage of an attention mechanism is that it may make it easier to learn in the presence of clutter
by focusing on the relevant part of the image and ignoring the irrelevant part. We test this hypothesis
with several experiments on a new task we call Cluttered Translated MNIST. Data for this task was
generated by first placing an MNIST digit in a random location of a larger blank image and then
adding random 8 by 8 subpatches from other random MNIST digits to random locations of the
image. The goal is to classify the complete digit present in the image. Figure 2b shows a random
sample of test cases for the 60 by 60 Cluttered Translated MNIST task.

Table 2a shows the classification results for the models we trained on 60 by 60 Cluttered Translated
MNIST with 4 pieces of clutter. The presence of clutter makes the task much more difficult but the
performance of the attention model is affected less than the performance of the other models. RAM
with 4 glimpses reaches 7.1% error, which outperforms fully-connected models by a wide margin
and the convolutional neural network by 0.7%, and RAM trained with 6 and 8 glimpses achieves
even lower error. Since RAM achieves larger relative error improvements over a convolutional
network in the presence of clutter these results suggest the attention-based models may be better at
dealing with clutter than convolutional networks because they can simply ignore it by not looking at
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Motivation and task
• New class of networks that combine inference with long-term 

memories 
‣ LSTM is a subclass 
‣ But the class is much broader 

• The long-term memories  
can be read from or written to 
‣ Long-term memories == Knowledge base 
‣ We want to store information  
‣ We want to retrieve information
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Figure 2. Our approach Neural-Image-QA, see Section 3 for de-
tails.

In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words a

q,x

=

�
a1,a2, ...,aN (q,x)

 
,

where a

t

are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

â

t

= argmax

a2V
p(a|x, q, ˆA

t�1;✓) (2)

where ˆ

A

t�1 = {â1, . . . , ât�1} is the set of previous words,
with ˆ

A0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when â

t

= $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ ˆ

A

t�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each q

t

is the t-th word ques-
tion and J?K := q

n

encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].
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Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words ˆ

a1..t := [â1, . . . , ât�1], i.e.
q̂

t

:= [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input v

t

as a
concatenation of [x, q̂

t

].
As visualized in detail in Figure 3, the LSTM unit takes

an input vector v
t

at each time step t and predicts an out-
put word z

t

which is equal to its latent hidden state h

t

. As
discussed above z

t

is a linear embedding of the correspond-
ing answer word a

t

. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity � : R 7! [0, 1], �(v) = (1 + e

�v

)

�1

and the hyperbolic tangent nonlinearity � : R 7! [�1, 1],
�(v) =

e

v�e

�v

e

v+e

�v = 2�(2v)� 1, the LSTM updates for time
step t given inputs v

t

, h
t�1, and the memory cell c

t�1 as
follows:
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where � denotes element-wise multiplication. All the
weights W and biases b of the network are learnt jointly
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Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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Under review as a conference paper at ICLR 2015

O: (output feature map) – produces a new output (in the feature representation space), given
the new input and the current memory state.

R: (response) – converts the output into the response format desired. For example, a textual
response or an action.

Given an input x (e.g., an input character, word or sentence depending on the granularity chosen, an
image or an audio signal) the flow of the model is as follows:

1. Convert x to an internal feature representation I(x).
2. Update memoriesmi given the new input: mi = G(mi, I(x),m), ∀i.
3. Compute output features o given the new input and the memory: o = O(I(x),m).
4. Finally, decode output features o to give the final response: r = R(o).

Memory networks cover a wide class of possible implementations. The components I , G, O and R
can potentially use any existing ideas from the machine learning literature, e.g., make use of your
favorite models (SVMs, decision trees, etc.).

I component: Component I can make use of standard pre-processing, e.g., parsing, coreference
and entity resolution for text inputs. It could also encode the input into an internal feature represen-
tation, e.g., convert from text to a sparse or dense feature vector.

G component: The simplest form of G is to store I(x) in a “slot” in the memory:
mS(x) = I(x), (1)

where S(.) is a function selecting the slot. That is, G updates the index S(x) of m, but all other
parts of the memory remain untouched. More sophisticated variants of G could go back and update
earlier stored memories (potentially, all memories) based on the new evidence from the current input
x. If the input is at the character or word level one could group inputs (i.e., by segmenting them into
chunks) and store each chunk in a memory slot.

If the memory is huge (e.g., consider all of Freebase or Wikipedia) one needs to organize the memo-
ries. This can be achieved with the slot choosing function S just described: for example, it could be
designed, or trained, to store memories by entity or topic. Consequently, for efficiency at scale, G
(and O) need not operate on all memories: they can operate on only a retrieved subset of candidates
(only operating on memories that are on the right topic). We explore a simple variant of this in our
experiments.

If the memory becomes full, a procedure for “forgetting” could also be implemented by S as it
chooses which memory is replaced, e.g., S could score the utility of each memory, and overwrite
the least useful. We have not explored this experimentally yet.

O and R components: The O component is typically responsible for reading from memory and
performing inference, e.g., calculating what are the relevant memories to perform a good response.
The R component then produces the final response given O. For example in a question answering
setup O finds relevant memories, and then R produces the actual wording of the answer, e.g., R
could be an RNN that is conditioned on the output ofO. Our hypothesis is that without conditioning
on such memories, such an RNN will perform poorly.

3 A MEMNN IMPLEMENTATION FOR TEXT

One particular instantiation of a memory network is where the components are neural networks. We
refer to these as memory neural networks (MemNNs). In this section we describe a relatively simple
implementation of a MemNN with textual input and output.

3.1 BASIC MODEL

In our basic architecture, the I module takes an input text. Let us first assume this to be a sentence:
either the statement of a fact, or a question to be answered by the system (later we will consider
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the least useful. We have not explored this experimentally yet.

O and R components: The O component is typically responsible for reading from memory and
performing inference, e.g., calculating what are the relevant memories to perform a good response.
The R component then produces the final response given O. For example in a question answering
setup O finds relevant memories, and then R produces the actual wording of the answer, e.g., R
could be an RNN that is conditioned on the output ofO. Our hypothesis is that without conditioning
on such memories, such an RNN will perform poorly.

3 A MEMNN IMPLEMENTATION FOR TEXT

One particular instantiation of a memory network is where the components are neural networks. We
refer to these as memory neural networks (MemNNs). In this section we describe a relatively simple
implementation of a MemNN with textual input and output.

3.1 BASIC MODEL

In our basic architecture, the I module takes an input text. Let us first assume this to be a sentence:
either the statement of a fact, or a question to be answered by the system (later we will consider
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Figure 1: Example “story” statements, questions and answers generated by a simple simulation.
Answering the question about the location of the milk requires comprehension of the actions “picked
up” and “left”. The questions also require comprehension of the time elements of the story, e.g., to
answer “where was Joe before the office?”.

Joe went to the kitchen. Fred went to the kitchen. Joe picked up the milk.
Joe travelled to the office. Joe left the milk. Joe went to the bathroom.
Where is the milk now? A: office
Where is Joe? A: bathroom
Where was Joe before the office? A: kitchen

descent (SGD). Specifically, for a given question x with true response r and supporting sentences
f1 and f2 (when k = 2), we minimize over model parameters UO and UR:

∑

f̄ ̸=f1

max(0, γ − sO(x, f1) + sO(x, f̄)) + (6)

∑

f̄ ′ ̸=f2

max(0, γ − sO([x,mo1 ], f2]) + sO([x,mo1 ], f̄ ′])) + (7)
∑

r̄ ̸=r

max(0, γ − sR([x,mo1 ,mo2 ], r) + sR([x,mo1 ,mo2 ], r̄])) (8)

where f̄ , f̄ ′ and r̄ are all other choices than the correct labels, and γ is the margin. At every step of
SGD we sample f̄ , f̄ ′, r̄ rather than compute the whole sum for each training example. In the case of
employing an RNN for the R component of our MemNN (instead of using a single word response
as above) we replace the last term with the standard log likelihood used in a language modeling
task, where the RNN is fed the sequence [x, o1, o2, r]. At test time we output its prediction r given
[x, o1, o2]. In contrast the absolute simplest model, that of using k = 1 and outputting the located
memorymo1 as response r, would only use the first term to train.

In the following subsections we consider some extensions of our basic model.

3.2 WORD SEQUENCES AS INPUT

If input is at the word rather than sentence level, that is words arrive in a stream (as is often done, e.g.,
with RNNs) and not already segmented as statements and questions, we need to modify the approach
we have so far described. We hence add a “segmentation” function, to be learned, which takes as in-
put the last sequence of words that have so far not been segmented and looks for breakpoints. When
the segmenter fires (indicates the current sequence is a segment) we write that sequence to memory,
and can then proceed as before. The segmenter is modeled similarly to our other components, as an
embedding model of the form:

seg(c) = USΦseg(c) (9)
where c is the sequence of input words represented as bag of words using a separate dictionary. If
seg(c) > γ, where γ is the margin, then this sequence is recognised as a segment. In this way, our
MemNN has a learning component in its write operation. Further details on the training mechanism
are given in Appendix B.

3.3 EFFICIENT MEMORY VIA HASHING

If the set of stored memories is very large it is prohibitively expensive to score all of them as in
equations (2) and (3). Instead we explore hashing tricks to speed up lookup: hash the input I(x) into
one or more buckets and then only score memoriesmi that are in the same buckets. We investigated
two ways of doing hashing: (i) via hashing words; and (ii) via clustering word embeddings. For (i)
we construct as many buckets as there are words in the dictionary, then for a given sentence we hash
it into all the buckets corresponding to its words. The problem with (i) is that a memorymi will
only be considered if it shares at least one word with the input I(x). Method (ii) tries to solve this
by clustering instead. After training the embedding matrix UO, we run K-means to cluster word
vectors (UO)i, thus giving K buckets. We then hash a given sentence into all the buckets that its
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2 Approach

Our model primarily addresses the bAbI question and answering problems1, but could easily be
adapted to other text applications. A given bAbI task consists of a set of statements, followed by
a question whose answer is typically a single word (in a few tasks, answers are a set of words).
Consider a sample task:
Sam walks into the kitchen.

Sam picks up an apple.

Sam walks into the bedroom.

Sam drops the apple.

Q: Where is the apple?

A. Bedroom

The answer is available to the model at training time, but must be predicted at test time. Note that
for each question, only some subset of the statements contain information needed for the answer,
and the others are essentially irrelevant distractors (e.g. the first sentence in the above example). In
Weston et al. (2015a), this supporting subset was explicitly indicated to the model during training
and the key difference between that work and this one is that this information is no longer provided.
Hence, the model must deduce for itself at training and test time which sentences are relevant and
which are not. There are a total of 20 different types of bAbI tasks that probe different forms of
reasoning and deduction. For a more complete description of them, please refer to Weston et al.
(2015a).

Formally, for one of the 20 bAbI tasks, we are given P example problems, each having a set of I
sentences {xp

i } where I  320; a question sentence qp and answer ap. The examples are randomly
split into disjoint train and test sets. For brevity, we henceforth drop the example index p. Let the
jth word of sentence i be xij , represented by a one-hot vector of length V (where the vocabulary is
of size V = 177, reflecting the simplistic nature of the bAbI language). The same representation is
used for the question q and answer a.

2.1 Single Layer
We start by describing our model for a single layer case, which implements a single memory lookup
operation. We then show it can be stacked to give multiple “hops” in memory. Since some of our
target tasks require understanding of temporal order, we then describe a way to incorporate time into
the model by introducing specific temporal features into the lookup operations.

Each memory layer has an input and output portion. The input part implements content-based
addressing, with each memory location holding a distinct output vector. For the purposes of expla-
nation, we describe our model for the case where a bag-of-words (BoW) representation is used for
each sentence (other representations are considered in Section 2.3).

Input side: Suppose we are given an input sentence

xi = {xi1, xi2, ..., xin},
The memory vector mi of dimension d is computed by first embedding each word using an embed-
ding matrix A (of size d⇥V ) and then summing over all words in xi (assuming we are using a BoW
representation):

mi =
X

j

Axij .

Thus, the entire set of sentences {xi} are converted into memory vectors {mi}. The question vector
q is also embedded via another embedding matrix B (with the same dimensions as A): u =

P
j Bqj .

In the embedding space, we compute the match between the question u and each memory mi, by
taking the inner product followed by a softmax:

pi = Softmax(uTmi) = Softmax(qTBT
X

j

Axij). (1)

where Softmax(zi) = ezi/
P

j e
zj . Defined in this way, p is a probability vector over the I sen-

tences.
1
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Output side: Each memory vector on the input has a corresponding output vector ci, given by
another embedding matrix C applied to sentence xi:

ci =
X

j

Cxij .

The output vector from the memory o is then a sum over the ci, weighted by the probability vector
from the input:

o =
X

i

pici =
X

i

X

j

piCxij (2)

Because the functions from input sentences and question to output is smooth, we can easily compute
gradients and back-propagate through it. Other recently proposed forms of memory or attention take
this approach, notably Graves et al. (2014) and Bahdanau et al. (2015).

Answer prediction: In the single layer case, the sum of the output vector o and the question em-
bedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax to produce
the predicted answer:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1. During training, all three embedding matrices A, B and C, as
well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
answer a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).

Question  
q!

O
utput 

Input 

Embedding B!

Embedding C!

W
eights Softmax 

Sum 

pi!

ci!

mi!

Sentences 
 {xi}!

Embedding A!

o! Σ W! Softm
ax 

Predicted  
Answer  
a!^!

u!

u!

Figure 1: A single layer version of our model.
2.2 Multiple Layers
The single memory layer proposed is only able to answer questions that involve a single memory
lookup. However, if a retrieved memory depends on another memory (e.g. as in the example from
Section 2), then multiple lookups are required to answer the question. Thus, as in the original
Memory Networks approach, we now extend our model to handle multiple lookup operations, or
hops.

The memory layers are stacked in the following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer
k:

uk+1 = uk + ok. (4)
• Each layer has its own embedding matrices Ak, Ck, used to embed the input sentences

{xi}. However, as discussed below, they are constrained to ease training and reduce the
number of parameters.

3
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2 Approach

Our model primarily addresses the bAbI question and answering problems1, but could easily be
adapted to other text applications. A given bAbI task consists of a set of statements, followed by
a question whose answer is typically a single word (in a few tasks, answers are a set of words).
Consider a sample task:
Sam walks into the kitchen.

Sam picks up an apple.

Sam walks into the bedroom.

Sam drops the apple.

Q: Where is the apple?

A. Bedroom

The answer is available to the model at training time, but must be predicted at test time. Note that
for each question, only some subset of the statements contain information needed for the answer,
and the others are essentially irrelevant distractors (e.g. the first sentence in the above example). In
Weston et al. (2015a), this supporting subset was explicitly indicated to the model during training
and the key difference between that work and this one is that this information is no longer provided.
Hence, the model must deduce for itself at training and test time which sentences are relevant and
which are not. There are a total of 20 different types of bAbI tasks that probe different forms of
reasoning and deduction. For a more complete description of them, please refer to Weston et al.
(2015a).

Formally, for one of the 20 bAbI tasks, we are given P example problems, each having a set of I
sentences {xp

i } where I  320; a question sentence qp and answer ap. The examples are randomly
split into disjoint train and test sets. For brevity, we henceforth drop the example index p. Let the
jth word of sentence i be xij , represented by a one-hot vector of length V (where the vocabulary is
of size V = 177, reflecting the simplistic nature of the bAbI language). The same representation is
used for the question q and answer a.

2.1 Single Layer
We start by describing our model for a single layer case, which implements a single memory lookup
operation. We then show it can be stacked to give multiple “hops” in memory. Since some of our
target tasks require understanding of temporal order, we then describe a way to incorporate time into
the model by introducing specific temporal features into the lookup operations.

Each memory layer has an input and output portion. The input part implements content-based
addressing, with each memory location holding a distinct output vector. For the purposes of expla-
nation, we describe our model for the case where a bag-of-words (BoW) representation is used for
each sentence (other representations are considered in Section 2.3).

Input side: Suppose we are given an input sentence

xi = {xi1, xi2, ..., xin},
The memory vector mi of dimension d is computed by first embedding each word using an embed-
ding matrix A (of size d⇥V ) and then summing over all words in xi (assuming we are using a BoW
representation):

mi =
X

j

Axij .

Thus, the entire set of sentences {xi} are converted into memory vectors {mi}. The question vector
q is also embedded via another embedding matrix B (with the same dimensions as A): u =

P
j Bqj .

In the embedding space, we compute the match between the question u and each memory mi, by
taking the inner product followed by a softmax:

pi = Softmax(uTmi) = Softmax(qTBT
X

j

Axij). (1)

where Softmax(zi) = ezi/
P

j e
zj . Defined in this way, p is a probability vector over the I sen-

tences.
1
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Output side: Each memory vector on the input has a corresponding output vector ci, given by
another embedding matrix C applied to sentence xi:

ci =
X

j

Cxij .

The output vector from the memory o is then a sum over the ci, weighted by the probability vector
from the input:

o =
X

i

pici =
X

i

X

j

piCxij (2)

Because the functions from input sentences and question to output is smooth, we can easily compute
gradients and back-propagate through it. Other recently proposed forms of memory or attention take
this approach, notably Graves et al. (2014) and Bahdanau et al. (2015).

Answer prediction: In the single layer case, the sum of the output vector o and the question em-
bedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax to produce
the predicted answer:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1. During training, all three embedding matrices A, B and C, as
well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
answer a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: A single layer version of our model.
2.2 Multiple Layers
The single memory layer proposed is only able to answer questions that involve a single memory
lookup. However, if a retrieved memory depends on another memory (e.g. as in the example from
Section 2), then multiple lookups are required to answer the question. Thus, as in the original
Memory Networks approach, we now extend our model to handle multiple lookup operations, or
hops.

The memory layers are stacked in the following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer
k:

uk+1 = uk + ok. (4)
• Each layer has its own embedding matrices Ak, Ck, used to embed the input sentences

{xi}. However, as discussed below, they are constrained to ease training and reduce the
number of parameters.
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• At the top of the network, the input to W also combines the input and the output of the top
memory layer: â = Softmax(W (oK + uK)).

We explore two types of weight tying within the model:

1. Adjacent: the output embedding for one layer is the input embedding for the one above,
i.e. Ak+1 = Ck.

2. Layer-wise (RNN): the input and output embeddings are the same across different layers,
i.e. A1 = A2 = A3 and C1 = C2 = C3.

In adjacent tying, we also constrain (a) the answer prediction matrix to be the same as the final
output embedding, i.e WT = C3, and (b) the question embedding to match the input embedding of
the first layer, i.e. B = A1.

A three-layer version of our memory model is shown in Fig. 2. Overall, it is similar to the original
Memory Network model, except that the hard max operations within each layer have been replaced
with a continuous weighting from the softmax.

Note that if we use the layer-wise weight tying scheme, our model can be cast as a traditional RNN
where we divide the outputs of the RNN into internal and external outputs. Emitting an internal
output corresponds to considering a memory (a ‘supporting sentence’), and emitting an external
output corresponds to answering a question. From the RNN point of view, u in Fig. 2 and (4)
is a hidden state, and the model generates an internal output p using A; here, unlike a standard
RNN, we explicitly condition on the outputs stored in memory. The model then ingests p using
C, updates the hidden state, and so on. In contrast to a traditional RNN, the model makes several
computational steps before producing an output meant to be seen by the “outside world”. In this
view, the terminology of input and output from Fig. 1 is flipped - when viewed as a traditional
RNN with this special conditioning of outputs, A becomes the output embedding of the RNN and
C becomes the input embedding. Note that we keep all outputs and inputs soft, excepting perhaps
the final external output at test time. It may be possible to train these discretely using reinforcement
learning or some form of structured prediction, but in this work we rely on continuous outputs and
standard backpropagation.

Finally, note that with layer-wise weight tying, we have found it useful to add a linear mapping H
to the update of u between hops; that is, uk+1 = Huk + ok. We hence use that in our experiments.
The parameters of H will be learned from data.
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Figure 2: A three layer version of our model. Each layer is shown in more detail in Fig. 1. In
practice, we constrain several of the embedding matrices to be the same (see Section 2.2).
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• LSTM: A standard LSTM model, trained using question / answer pairs only (i.e. also weakly
supervised). For more detail, see [21].

4.4 Results
We report a variety of design choices: (i) BoW vs Position Encoding (PE) sentence representation;
(ii) training on all 20 tasks independently vs jointly training (joint training used an embedding
dimension of d = 50, while independent training used d = 20); (iii) two phase training: training
with softmaxes from the start vs first without softmaxes, then with (linear start (LS)); (iv) varying
memory hops from 1 to 3.

The results across all 20 tasks are given in Table 1 for the 1k training set, along with the mean
performance for 10k training set 1. They show a number of interesting points:

• The best MemN2N models are reasonably close to the supervised models (e.g. 1k: 6.7% for
MemNN vs 12.6% for MemN2N with position encoding + linear start + random noise, jointly
trained and 10k: 3.2% for MemNN vs 7.1% for MemN2N with position encoding + linear start +
random noise), although the supervised models are still superior.

• All variants of our proposed model comfortably beat the weakly supervised baseline methods.

• The position encoding (PE) representation improves over bag-of-words (BoW), as demonstrated
by clear improvements on tasks 4, 5, 15 and 18, where word ordering is particularly important.

• The linear start (LS) to training seems to help avoid local minima. See task 16 in Table 1, where
PE alone gets 53.6% error, while using LS reduces it to 1.6%.

• Jittering the time index with random empty memories (RN) as described in Section 4.1 gives a
small but consistent boost in performance, especially for the smaller training set.

• Joint training on all tasks helps.

• More computational hops give improved performance. We give examples of the hops performed
(via the values of eq. (1)) over some illustrative examples in Fig. 2 and Appendix B.

Baseline MemN2N
Strongly PE 1 hop 2 hops 3 hops PE PE LS

Supervised LSTM MemNN PE LS PE LS PE LS PE LS LS RN LW
Task MemNN [21] [21] WSH BoW PE LS RN joint joint joint joint joint
1: 1 supporting fact 0.0 50.0 0.1 0.6 0.1 0.2 0.0 0.8 0.0 0.1 0.0 0.1
2: 2 supporting facts 0.0 80.0 42.8 17.6 21.6 12.8 8.3 62.0 15.6 14.0 11.4 18.8
3: 3 supporting facts 0.0 80.0 76.4 71.0 64.2 58.8 40.3 76.9 31.6 33.1 21.9 31.7
4: 2 argument relations 0.0 39.0 40.3 32.0 3.8 11.6 2.8 22.8 2.2 5.7 13.4 17.5
5: 3 argument relations 2.0 30.0 16.3 18.3 14.1 15.7 13.1 11.0 13.4 14.8 14.4 12.9
6: yes/no questions 0.0 52.0 51.0 8.7 7.9 8.7 7.6 7.2 2.3 3.3 2.8 2.0
7: counting 15.0 51.0 36.1 23.5 21.6 20.3 17.3 15.9 25.4 17.9 18.3 10.1
8: lists/sets 9.0 55.0 37.8 11.4 12.6 12.7 10.0 13.2 11.7 10.1 9.3 6.1
9: simple negation 0.0 36.0 35.9 21.1 23.3 17.0 13.2 5.1 2.0 3.1 1.9 1.5
10: indefinite knowledge 2.0 56.0 68.7 22.8 17.4 18.6 15.1 10.6 5.0 6.6 6.5 2.6
11: basic coreference 0.0 38.0 30.0 4.1 4.3 0.0 0.9 8.4 1.2 0.9 0.3 3.3
12: conjunction 0.0 26.0 10.1 0.3 0.3 0.1 0.2 0.4 0.0 0.3 0.1 0.0
13: compound coreference 0.0 6.0 19.7 10.5 9.9 0.3 0.4 6.3 0.2 1.4 0.2 0.5
14: time reasoning 1.0 73.0 18.3 1.3 1.8 2.0 1.7 36.9 8.1 8.2 6.9 2.0
15: basic deduction 0.0 79.0 64.8 24.3 0.0 0.0 0.0 46.4 0.5 0.0 0.0 1.8
16: basic induction 0.0 77.0 50.5 52.0 52.1 1.6 1.3 47.4 51.3 3.5 2.7 51.0
17: positional reasoning 35.0 49.0 50.9 45.4 50.1 49.0 51.0 44.4 41.2 44.5 40.4 42.6
18: size reasoning 5.0 48.0 51.3 48.1 13.6 10.1 11.1 9.6 10.3 9.2 9.4 9.2
19: path finding 64.0 92.0 100.0 89.7 87.4 85.6 82.8 90.7 89.9 90.2 88.0 90.6
20: agent’s motivation 0.0 9.0 3.6 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2
Mean error (%) 6.7 51.3 40.2 25.1 20.3 16.3 13.9 25.8 15.6 13.3 12.4 15.2
Failed tasks (err. > 5%) 4 20 18 15 13 12 11 17 11 11 11 10
On 10k training data
Mean error (%) 3.2 36.4 39.2 15.4 9.4 7.2 6.6 24.5 10.9 7.9 7.5 11.0
Failed tasks (err. > 5%) 2 16 17 9 6 4 4 16 7 6 6 6

Table 1: Test error rates (%) on the 20 QA tasks for models using 1k training examples (mean
test errors for 10k training examples are shown at the bottom). Key: BoW = bag-of-words
representation; PE = position encoding representation; LS = linear start training; RN = random
injection of time index noise; LW = RNN-style layer-wise weight tying (if not stated, adjacent
weight tying is used); joint = joint training on all tasks (as opposed to per-task training).

1More detailed results for the 10k training set can be found in Appendix A.
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word-based input sequences). The text is stored in the next available memory slot in its original
form2, i.e., S(x) returns the next empty memory slot N : mN = x, N = N + 1. The G module
is thus only used to store this new memory, so old memories are not updated. More sophisticated
models are described in subsequent sections.

The core of inference lies in the O and R modules. The O module produces output features by
finding k supporting memories given x. We use k up to 2, but the procedure is generalizable to
larger k. For k = 1 the highest scoring supporting memory is retrieved with:

o1 = O1(x,m) = argmax
i=1,...,N

sO(x,mi) (2)

where sO is a function that scores the match between the pair of sentences x andmi. For the case
k = 2 we then find a second supporting memory given the first found in the previous iteration:

o2 = O2(x,m) = argmax
i=1,...,N

sO([x,mo1 ],mi) (3)

where the candidate supporting memorymi is now scored with respect to both the original input and
the first supporting memory, where square brackets denote a list. The final output o is [x,mo1 ,mo2 ],
which is input to the module R.

Finally, R needs to produce a textual response r. The simplest response is to return mok , i.e.,
to output the previously uttered sentence we retrieved. To perform true sentence generation, one
can instead employ an RNN. In our experiments we also consider an easy to evaluate compromise
approach where we limit textual responses to be a single word (out of all the words seen by the
model) by ranking them:

r = argmaxw∈W sR([x,mo1 ,mo2 ], w) (4)
whereW is the set of all words in the dictionary, and sR is a function that scores the match.

An example task is given in Figure 1. In order to answer the question x = “Where is the milk now?”,
the O module first scores all memories, i.e., all previously seen sentences, against x to retrieve the
most relevant fact,mo1 = “Joe left the milk” in this case. Then, it would search the memory again
to find the second relevant fact given [x,mo1 ], that is mo2 = “Joe travelled to the office” (the last
place Joe went before dropping the milk). Finally, the R module using eq. (4) would score words
given [x,mo1 ,mo2 ] to output r = “office”.

In our experiments, the scoring functions sO and sR have the same form, that of an embedding
model:

s(x, y) = Φx(x)
⊤U⊤UΦy(y). (5)

where U is a n ×D matrix where D is the number of features and n is the embedding dimension.
The role of Φx and Φy is to map the original text to the D-dimensional feature space. The simplest
feature space to choose is a bag of words representation, we choose D = 3|W | for sO , i.e., every
word in the dictionary has three different representations: one forΦy(.) and two forΦx(.) depending
on whether the words of the input arguments are from the actual input x or from the supporting
memories so that they can be modeled differently.3 Similarly, we used D = 3|W | for sR as well.
sO and sR use different weight matrices UO and UR.

Training We train in a fully supervised setting where we are given desired inputs and responses,
and the supporting sentences are labeled as such in the training data (but not in the test data, where
we are given only the inputs). That is, during training we know the best choice of both max functions
in eq. (2) and (3)4. Training is then performed with a margin ranking loss and stochastic gradient

2Technically, we will be using an embedding model to represent text, so we could store the incoming input
using its learned embedding vector in memory instead. The downside of such a choice is that during learning
the embedding parameters are changing, and hence the stored vectors would go stale. However, at test time
(where the parameters are not changing) storing as embedding vectors could make sense, as this is faster than
reading the original words and then embedding them repeatedly.

3In order to model with only a single dictionary, one could consider deeper networks that transform the
words dependent on their context. We leave this to future work.

4This information is often available in real question answer datasets, see e.g., (Berant et al., 2013) and
(Bordes et al., 2014a). However, note that methods like RNNs and LSTMs cannot easily use this information.
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larger k. For k = 1 the highest scoring supporting memory is retrieved with:
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k = 2 we then find a second supporting memory given the first found in the previous iteration:
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where the candidate supporting memorymi is now scored with respect to both the original input and
the first supporting memory, where square brackets denote a list. The final output o is [x,mo1 ,mo2 ],
which is input to the module R.

Finally, R needs to produce a textual response r. The simplest response is to return mok , i.e.,
to output the previously uttered sentence we retrieved. To perform true sentence generation, one
can instead employ an RNN. In our experiments we also consider an easy to evaluate compromise
approach where we limit textual responses to be a single word (out of all the words seen by the
model) by ranking them:

r = argmaxw∈W sR([x,mo1 ,mo2 ], w) (4)
whereW is the set of all words in the dictionary, and sR is a function that scores the match.

An example task is given in Figure 1. In order to answer the question x = “Where is the milk now?”,
the O module first scores all memories, i.e., all previously seen sentences, against x to retrieve the
most relevant fact,mo1 = “Joe left the milk” in this case. Then, it would search the memory again
to find the second relevant fact given [x,mo1 ], that is mo2 = “Joe travelled to the office” (the last
place Joe went before dropping the milk). Finally, the R module using eq. (4) would score words
given [x,mo1 ,mo2 ] to output r = “office”.

In our experiments, the scoring functions sO and sR have the same form, that of an embedding
model:

s(x, y) = Φx(x)
⊤U⊤UΦy(y). (5)

where U is a n ×D matrix where D is the number of features and n is the embedding dimension.
The role of Φx and Φy is to map the original text to the D-dimensional feature space. The simplest
feature space to choose is a bag of words representation, we choose D = 3|W | for sO , i.e., every
word in the dictionary has three different representations: one forΦy(.) and two forΦx(.) depending
on whether the words of the input arguments are from the actual input x or from the supporting
memories so that they can be modeled differently.3 Similarly, we used D = 3|W | for sR as well.
sO and sR use different weight matrices UO and UR.

Training We train in a fully supervised setting where we are given desired inputs and responses,
and the supporting sentences are labeled as such in the training data (but not in the test data, where
we are given only the inputs). That is, during training we know the best choice of both max functions
in eq. (2) and (3)4. Training is then performed with a margin ranking loss and stochastic gradient

2Technically, we will be using an embedding model to represent text, so we could store the incoming input
using its learned embedding vector in memory instead. The downside of such a choice is that during learning
the embedding parameters are changing, and hence the stored vectors would go stale. However, at test time
(where the parameters are not changing) storing as embedding vectors could make sense, as this is faster than
reading the original words and then embedding them repeatedly.

3In order to model with only a single dictionary, one could consider deeper networks that transform the
words dependent on their context. We leave this to future work.

4This information is often available in real question answer datasets, see e.g., (Berant et al., 2013) and
(Bordes et al., 2014a). However, note that methods like RNNs and LSTMs cannot easily use this information.
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Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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external memory resources 
‣ enrich RNN by a large addressable memory 
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• Infers simple algorithms like copying

14

Figure 1: Neural Turing Machine Architecture. During each update cycle, the controller
network receives inputs from an external environment and emits outputs in response. It also
reads to and writes from a memory matrix via a set of parallel read and write heads. The dashed
line indicates the division between the NTM circuit and the outside world.

2013) (Bahdanau et al., 2014) and program search (Hochreiter et al., 2001b) (Das et al.,
1992), constructed with recurrent neural networks.

3 Neural Turing Machines

A Neural Turing Machine (NTM) architecture contains two basic components: a neural
network controller and a memory bank. Figure 1 presents a high-level diagram of the NTM
architecture. Like most neural networks, the controller interacts with the external world via
input and output vectors. Unlike a standard network, it also interacts with a memory matrix
using selective read and write operations. By analogy to the Turing machine we refer to the
network outputs that parametrise these operations as “heads.”

Crucially, every component of the architecture is differentiable, making it straightfor-
ward to train with gradient descent. We achieved this by defining ‘blurry’ read and write
operations that interact to a greater or lesser degree with all the elements in memory (rather
than addressing a single element, as in a normal Turing machine or digital computer). The
degree of blurriness is determined by an attentional “focus” mechanism that constrains each
read and write operation to interact with a small portion of the memory, while ignoring the
rest. Because interaction with the memory is highly sparse, the NTM is biased towards
storing data without interference. The memory location brought into attentional focus is
determined by specialised outputs emitted by the heads. These outputs define a normalised
weighting over the rows in the memory matrix (referred to as memory “locations”). Each
weighting, one per read or write head, defines the degree to which the head reads or writes

5

Similar to standard  Neural Nets, 
Controller interacts with the external 
world via input/output vectors
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Figure 5: LSTM Generalisation on the Copy Task. The plots show inputs and outputs
for the same sequence lengths as Figure 4. Like NTM, LSTM learns to reproduce sequences
of up to length 20 almost perfectly. However it clearly fails to generalise to longer sequences.
Also note that the length of the accurate prefix decreases as the sequence length increases,
suggesting that the network has trouble retaining information for long periods.

Figure 6: NTM Memory Use During the Copy Task. The plots in the left column depict
the inputs to the network (top), the vectors added to memory (middle) and the corresponding
write weightings (bottom) during a single test sequence for the copy task. The plots on the right
show the outputs from the network (top), the vectors read from memory (middle) and the read
weightings (bottom). Only a subset of memory locations are shown. Notice the sharp focus of
all the weightings on a single location in memory (black is weight zero, white is weight one).
Also note the translation of the focal point over time, reflects the network’s use of iterative
shifts for location-based addressing, as described in Section 3.3.2. Lastly, observe that the read
locations exactly match the write locations, and the read vectors match the add vectors. This
suggests that the network writes each input vector in turn to a specific memory location during
the input phase, then reads from the same location sequence during the output phase.
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LSTM

Figure 4: NTM Generalisation on the Copy Task. The four pairs of plots in the top row
depict network outputs and corresponding copy targets for test sequences of length 10, 20, 30,
and 50, respectively. The plots in the bottom row are for a length 120 sequence. The network
was only trained on sequences of up to length 20. The first four sequences are reproduced with
high confidence and very few mistakes. The longest one has a few more local errors and one
global error: at the point indicated by the red arrow at the bottom, a single vector is duplicated,
pushing all subsequent vectors one step back. Despite being subjectively close to a correct copy,
this leads to a high loss.

level programming language. In terms of data structures, we could say that NTM has
learned how to create and iterate through arrays. Note that the algorithm combines both
content-based addressing (to jump to start of the sequence) and location-based address-
ing (to move along the sequence). Also note that the iteration would not generalise to
long sequences without the ability to use relative shifts from the previous read and write
weightings (Equation 7), and that without the focus-sharpening mechanism (Equation 9)
the weightings would probably lose precision over time.

4.2 Repeat Copy

The repeat copy task extends copy by requiring the network to output the copied sequence a
specified number of times and then emit an end-of-sequence marker. The main motivation
was to see if the NTM could learn a simple nested function. Ideally, we would like it to be
able to execute a “for loop” containing any subroutine it has already learned.

The network receives random-length sequences of random binary vectors, followed by
a scalar value indicating the desired number of copies, which appears on a separate input
channel. To emit the end marker at the correct time the network must be both able to
interpret the extra input and keep count of the number of copies it has performed so far.
As with the copy task, no inputs are provided to the network after the initial sequence and
repeat number. The networks were trained to reproduce sequences of size eight random
binary vectors, where both the sequence length and the number of repetitions were chosen
randomly from one to ten. The input representing the repeat number was normalised to
have mean zero and variance one.
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Output side: Each memory vector on the input has a corresponding output vector ci, given by
another embedding matrix C applied to sentence xi:

ci =
X

j

Cxij .

The output vector from the memory o is then a sum over the ci, weighted by the probability vector
from the input:

o =
X

i

pici =
X

i

X

j

piCxij (2)

Because the functions from input sentences and question to output is smooth, we can easily compute
gradients and back-propagate through it. Other recently proposed forms of memory or attention take
this approach, notably Graves et al. (2014) and Bahdanau et al. (2015).

Answer prediction: In the single layer case, the sum of the output vector o and the question em-
bedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax to produce
the predicted answer:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1. During training, all three embedding matrices A, B and C, as
well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
answer a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).

Question  
q!

O
utput 

Input 

Embedding B!

Embedding C!

W
eights Softmax 

Sum 

pi!

ci!

mi!

Sentences 
 {xi}!

Embedding A!

o! Σ W! Softm
ax 

Predicted  
Answer  
a!^!

u!

u!

Figure 1: A single layer version of our model.
2.2 Multiple Layers
The single memory layer proposed is only able to answer questions that involve a single memory
lookup. However, if a retrieved memory depends on another memory (e.g. as in the example from
Section 2), then multiple lookups are required to answer the question. Thus, as in the original
Memory Networks approach, we now extend our model to handle multiple lookup operations, or
hops.

The memory layers are stacked in the following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer
k:

uk+1 = uk + ok. (4)
• Each layer has its own embedding matrices Ak, Ck, used to embed the input sentences

{xi}. However, as discussed below, they are constrained to ease training and reduce the
number of parameters.

3
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Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along

Attend to parts of the image
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location s

t

from a multinouilli distribution defined by Equation 8.

s̃
t

⇠ Multinoulli
L

({↵
i

})

@L
s

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
kth mini-batch, the moving average baseline is estimated
as an accumulated sum of the previous log likelihoods with
exponential decay:

b
k

= 0.9⇥ b
k�1 + 0.1⇥ log p(y | s̃

k

,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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s
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where, �
r

and �
e

are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({a
i

} , {↵
i

})
from Equation 6 is a function that returns a sampled a

i

at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location s

t

each time, instead we can take the expecta-
tion of the context vector ˆz

t

directly,

E
p(st|a)[ˆzt] =

LX

i=1

↵
t,i

a

i

(13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({a

i

} , {↵
i

}) =

P
L

i

↵
i

a

i

as introduced by Bahdanau
et al. (2014). This corresponds to feeding in a soft ↵
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with images, Donahue et al. (2014) also apply LSTMs to
videos, allowing their model to generate video descriptions.

All of these works represent images as a single feature vec-
tor from the top layer of a pre-trained convolutional net-
work. Karpathy & Li (2014) instead proposed to learn a
joint embedding space for ranking and generation whose
model learns to score sentence and image similarity as a
function of R-CNN object detections with outputs of a bidi-
rectional RNN. Fang et al. (2014) proposed a three-step
pipeline for generation by incorporating object detections.
Their model first learn detectors for several visual concepts
based on a multi-instance learning framework. A language
model trained on captions was then applied to the detector
outputs, followed by rescoring from a joint image-text em-
bedding space. Unlike these models, our proposed atten-
tion framework does not explicitly use object detectors but
instead learns latent alignments from scratch. This allows
our model to go beyond “objectness” and learn to attend to
abstract concepts.

Prior to the use of neural networks for generating captions,
two main approaches were dominant. The first involved
generating caption templates which were filled in based
on the results of object detections and attribute discovery
(Kulkarni et al. (2013), Li et al. (2011), Yang et al. (2011),
Mitchell et al. (2012), Elliott & Keller (2013)). The second
approach was based on first retrieving similar captioned im-
ages from a large database then modifying these retrieved
captions to fit the query (Kuznetsova et al., 2012; 2014).
These approaches typically involved an intermediate “gen-
eralization” step to remove the specifics of a caption that
are only relevant to the retrieved image, such as the name
of a city. Both of these approaches have since fallen out of
favour to the now dominant neural network methods.

There has been a long line of previous work incorpo-
rating attention into neural networks for vision related
tasks. Some that share the same spirit as our work include
Larochelle & Hinton (2010); Denil et al. (2012); Tang et al.
(2014). In particular however, our work directly extends
the work of Bahdanau et al. (2014); Mnih et al. (2014); Ba
et al. (2014).

3. Image Caption Generation with Attention
Mechanism

3.1. Model Details

In this section, we describe the two variants of our
attention-based model by first describing their common
framework. The main difference is the definition of the
� function which we describe in detail in Section 4. We
denote vectors with bolded font and matrices with capital
letters. In our description below, we suppress bias terms for
readability.

Figure 4. A LSTM cell, lines with bolded squares imply projec-
tions with a learnt weight vector. Each cell learns how to weigh
its input components (input gate), while learning how to modulate
that contribution to the memory (input modulator). It also learns
weights which erase the memory cell (forget gate), and weights
which control how this memory should be emitted (output gate).

3.1.1. ENCODER: CONVOLUTIONAL FEATURES

Our model takes a single raw image and generates a caption
y encoded as a sequence of 1-of-K encoded words.

y = {y1, . . . ,yC

} , y
i

2 RK

where K is the size of the vocabulary and C is the length
of the caption.

We use a convolutional neural network in order to extract a
set of feature vectors which we refer to as annotation vec-
tors. The extractor produces L vectors, each of which is
a D-dimensional representation corresponding to a part of
the image.

a = {a1, . . . ,aL} , ai 2 RD

In order to obtain a correspondence between the feature
vectors and portions of the 2-D image, we extract features
from a lower convolutional layer unlike previous work
which instead used a fully connected layer. This allows the
decoder to selectively focus on certain parts of an image by
selecting a subset of all the feature vectors.

3.1.2. DECODER: LONG SHORT-TERM MEMORY
NETWORK

We use a long short-term memory (LSTM) net-
work (Hochreiter & Schmidhuber, 1997) that produces a
caption by generating one word at every time step condi-
tioned on a context vector, the previous hidden state and the
previously generated words. Our implementation of LSTM

E - embedding matrix 
y - captions
h - previous hidden state
z - context vector, a dynamic 
representation of the relevant 
part of the image input at time t
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using T

s,t

: Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, i
t

, f
t

, c
t

, o
t

, h
t

are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ˆ

z 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ˆz
t

(equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ˆz

t

from the annotation vectors a
i

, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵
i

which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
a
i

’s together. The weight ↵
i

of each annotation vector a
i

is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state h

t�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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Once the weights (which sum to one) are computed, the
context vector ẑ
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is computed by

ˆ

z

t

= � ({a
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} , {↵
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where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:
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are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs
Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable s
t

as where the model
decides to focus attention when generating the tth word.
s
t,i

is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵

i

}, and view ẑ
t

as a random variable:
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We define a new objective function L
s

that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing L

s

:
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mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.
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to the features extracted at different image locations. For
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plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
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from the annotation vectors a
i
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we note that the hidden state varies as the output RNN ad-
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z 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ˆz
t

(equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ˆz
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from the annotation vectors a
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, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
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which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
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is computed by an attention model fatt for which we use
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state h
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was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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put and hidden state of the LSTM, respectively. The vector
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mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.
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t

(equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ˆz
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from the annotation vectors a
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, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
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location i is the right place to focus for producing the next
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a
i

’s together. The weight ↵
i
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we note that the hidden state varies as the output RNN ad-
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z 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ˆz
t

(equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ˆz
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from the annotation vectors a
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, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵
i

which can be interpreted either as the probability that
location i is the right place to focus for producing the next
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put and hidden state of the LSTM, respectively. The vector
ˆ

z 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ˆz
t

(equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ˆz
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from the annotation vectors a
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, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
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which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
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’s together. The weight ↵
i

of each annotation vector a
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is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state h

t�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location s
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from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
kth mini-batch, the moving average baseline is estimated
as an accumulated sum of the previous log likelihoods with
exponential decay:
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To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �
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and �
e

are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({a
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})
from Equation 6 is a function that returns a sampled a
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at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention
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tion location s
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each time, instead we can take the expecta-
tion of the context vector ˆz
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directly,
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and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
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P
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as introduced by Bahdanau
et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location s
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from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
kth mini-batch, the moving average baseline is estimated
as an accumulated sum of the previous log likelihoods with
exponential decay:
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To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
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probability 0.5 for a given image, we set the sampled at-
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To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using T

s,t

: Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

i

t

f

t

o

t

g

t

1

CCA =

0

BB@

�
�
�

tanh

1

CCAT
D+m+n,n

0

@
Ey

t�1

h

t�1

ˆ

z

t

1

A (1)

c

t

= f

t

� c

t�1 + i

t

� g

t

(2)
h

t

= o

t

� tanh(c

t

). (3)

Here, i
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t

, c
t

, o
t

, h
t

are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ˆ

z 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ˆz
t

(equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ˆz

t

from the annotation vectors a
i

, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
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which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
a
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’s together. The weight ↵
i

of each annotation vector a
i

is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state h

t�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
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In this work, we use a deep output layer (Pascanu et al.,
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4. Learning Stochastic “Hard” vs
Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable s
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We define a new objective function L
s

that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing L
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take the expected context vector
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location s

t

from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
kth mini-batch, the moving average baseline is estimated
as an accumulated sum of the previous log likelihoods with
exponential decay:
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To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@L
s

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�
r

(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �

e

@H[s̃n]

@W

�

where, �
r

and �
e
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validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.
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as an accumulated sum of the previous log likelihoods with
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To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the
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The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able s

t

from Sec. 4.1. The hidden activation of LSTM
h

t

is a linear projection of the stochastic context vector
ˆ

z

t

followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value E

p(st|a)[ht

] is equal
to computing h

t

using a single forward prop with the ex-
pected context vector E

p(st|a)[ˆzt]. Considering Eq. 7, let
n
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z

ˆ

z
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), n
t,i

denotes n
t

computed
by setting the random variable ˆ

z value to a

i

. We define the
normalized weighted geometric mean for the softmax kth

word prediction:
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[n

t

] = L

o

(Ey

t�1 + L

h

E[h
t

] + L

z

E[ˆz
t

]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(y

t

= k | a)] ⇡ E[p(y
t

= k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable s

t

is computed by simple feedforward propa-
gation with expected context vector E[ˆz

t

]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i

↵
ti

= 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t

↵
ti

⇡ 1. This can be in-
terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state h

t�1 at each
time step t, such that, � ({a

i

} , {↵
i

}) = �
P
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i

↵
i
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i

, where
�
t

= �(f
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(h

t�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

L
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= � log(P (y|x)) + �
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2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations a
i

used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1
https://www.whetlab.com/
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
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4.3. Training Procedure

Both variants of our attention model were trained with
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .
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ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
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other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
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ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations a
i

used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations a
i

used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
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to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations a
i

used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations a
i

used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.
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stood as approximately optimizing the marginal likelihood
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations a
i

used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1
https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”
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Instead, here we describe a more recently proposed approach
based on the attention-based encoder–decoder framework in
[22].
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Fig. 4. Graphical illustration of the attention-based encoder–decoder model
for image caption generation.

1) Model Description: The usual encoder–decoder based
image caption generation models use the activation of the
last fully-connected hidden layer as the continuous-space
representation, or the context vector, of the input image (see
Sec. II-D.) The authors of [22] however proposed to use the
activation from the last convolutional layer of the pre-trained
convolutional network, as in the bottom half of Fig. 4.

Unlike the fully-connected layer, in this case, the context set
consists of multiple vectors that correspond to different spatial
regions of the input image on which the attention mechanism
can be applied. Furthermore, due to convolution and pooling,
the spatial locations in pixel space represented by each con-
text vector overlaps substantially with those represented by
the neighbouring context vectors, which helps the attention
mechanism distinguish similar objects in an image using its
context information with respect to the whole image, or the
neighbouring pixels.

Similarly to the attention-based neural machine translation
in Sec. IV-A, the decoder is implemented as a conditional
RNN-LM. In [22], the content-based attention mechanism (see
Eq. (16)) with either the weighted sum (see Eq. (13)) or
hard decision (see Eq. (14) was tested by training a model
with the maximum likelihood estimator from Sec. III-C1 and
the variational learning from Sec. III-C2, respectively. The
authors of [22] reported the similar performances with these
two approaches on a number of benchmark datasets.

2) Experimental Result: In [22], the attention-based image
caption generator was evaluated on three datasets; Flickr
8K [47], Flickr 30K [48] and MS CoCo [49]. In addition to
the self-evaluation, an ensemble of multiple attention-based
models was submitted to Microsoft COCO Image Captioning
Challenge6 and evaluated with multiple automatic evaluation
metrics7 as well as by human evaluators.

6https://www.codalab.org/competitions/3221
7 BLEU [50], METEOR [51], ROUGE-L [52] and CIDEr [53].

TABLE III
THE PERFORMANCES OF THE IMAGE CAPTION GENERATION MODELS IN
THE MICROSOFT COCO IMAGE CAPTIONING CHALLENGE. (?) [20], (•)

[18], (�) [45], (⇧) [46] AND (⇤) [22]. THE ROWS ARE SORTED
ACCORDING TO M1.

Human Automatic
Model M1 M2 BLEU CIDEr
Human 0.638 0.675 0.471 0.91

Google? 0.273 0.317 0.587 0.946
MSR• 0.268 0.322 0.567 0.925

Attention-based⇤ 0.262 0.272 0.523 0.878
Captivator� 0.250 0.301 0.601 0.937

Berkeley LRCN⇧ 0.246 0.268 0.534 0.891

In this Challenge, the attention-based approach ranked third
based on the percentage of captions that are evaluated as better
or equal to human caption (M1) and the percentage of captions
that pass the Turing Test (M2). Interestingly, the same model
was ranked eighth according to the most recently proposed
metric of CIDEr and ninth according to the most widely used
metric of BLEU.8 It means that this model has better relative
performance in terms of human evaluation than in terms of the
automatic metrics, which only look at matching subsequences
of words, not directly at the meaning of the generated sentence.
The performance of the top-ranked systems, including the
attention-based model from [22], are listed in Table III.

The attention-based model was further found to be highly
interpretable, especially, compared to the simple encoder–
decoder models. See Fig. 5 for some examples.

C. Video Description Generation
Soon after the neural machine translation based on the

simple encoder–decoder framework was proposed in [25],
[3], it was further applied to video description generation,
which amounts to translating a (short) video clip to its natural
language description [28]. The authors of [28] used a pre-
trained convolutional network (see Sec. II-D) to extract a
feature vector from each frame of the video clip and average all
the frame-specific vectors to obtain a single fixed-dimensional
context vector of the whole video. A conditional RNN-LM
from Sec. II-B was used to generate a description based on
this context vector.

Since any video clip clearly has both temporal and spatial
structures, it is possible to exploit them by using the attention
mechanism described throughout this paper. In [23], the au-
thors proposed an approach based on the attention mechanism
to exploit the global and local temporal structures of the video
clips. Here we briefly describe their approach.

1) Model Description: In [23], two different types of
encoders are tested. The first one is a simple frame-wise
application of the pre-trained convolutional network. However,
they did not pool those per-frame context vectors as was done
in [28], but simply form a context set consisting of all the per-
frame feature vectors. The attention mechanism will work to
select one of those per-frame vectors for each output symbol
being decoded. In this way, the authors claimed that the overall
model captures the global temporal structure (the structure
across many frames, potentially across the whole video clip.)

8http://mscoco.org/dataset/#leaderboard-cap
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Network Design 

Key design choices: 
• 3x3 conv. kernels – very small 
• conv. stride 1 – no loss of information 

 
Other details: 
• Rectification (ReLU) non-linearity 
• 5 max-pool layers (x2 reduction) 
• no normalisation 
• 3 fully-connected (FC) layers 
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Neural Image Caption Generation with Visual Attention

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location s

t

from a multinouilli distribution defined by Equation 8.

s̃
t

⇠ Multinoulli
L

({↵
i

})

@L
s

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
kth mini-batch, the moving average baseline is estimated
as an accumulated sum of the previous log likelihoods with
exponential decay:

b
k

= 0.9⇥ b
k�1 + 0.1⇥ log p(y | s̃

k

,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@L
s

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�
r

(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �

e

@H[s̃n]

@W

�

where, �
r

and �
e

are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({a
i

} , {↵
i

})
from Equation 6 is a function that returns a sampled a

i

at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location s

t

each time, instead we can take the expecta-
tion of the context vector ˆz

t

directly,

E
p(st|a)[ˆzt] =

LX

i=1

↵
t,i

a

i

(13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({a

i

} , {↵
i

}) =

P
L

i

↵
i

a

i

as introduced by Bahdanau
et al. (2014). This corresponds to feeding in a soft ↵

-

196

512

N
eu

ra
lI

m
ag

e
C

ap
tio

n
G

en
er

at
io

n
w

ith
V

is
ua

lA
tt

en
tio

n

cl
os

el
y

fo
llo

w
s

th
e

on
e

us
ed

in
Za

re
m

ba
et

al
.(

20
14

)(
se

e
Fi

g.
4)

.
U

si
ng

T
s
,
t

:
R

s

!
R

t

to
de

no
te

a
si

m
pl

e
af

fin
e

tra
ns

fo
rm

at
io

n
w

ith
pa

ra
m

et
er

s
th

at
ar

e
le

ar
ne

d,

0 B B @

i

t

f

t

o

t

g

t

1 C C A
=

0 B B @

� � �
t
a
n
h

1 C C A
T
D
+
m

+
n
,
n

0 @
E
y

t
�
1

h

t
�
1

ˆ

z

t

1 A
(1

)

c

t

=
f

t

�
c

t
�
1
+
i

t

�
g

t

(2
)

h

t

=
o

t

�
t
a
n
h
(
c

t

)
.

(3
)

H
er

e,
i

t

,f
t

,c
t

,o
t

,h
t

ar
e

th
e

in
pu

t,
fo

rg
et

,m
em

or
y,

ou
t-

pu
ta

nd
hi

dd
en

st
at

e
of

th
e

LS
TM

,r
es

pe
ct

iv
el

y.
Th

e
ve

ct
or

ˆ

z
2

R
D

is
th

e
co

nt
ex

tv
ec

to
r,

ca
pt

ur
in

g
th

e
vi

su
al

in
fo

r-
m

at
io

n
as

so
ci

at
ed

w
ith

a
pa

rti
cu

la
r

in
pu

t
lo

ca
tio

n,
as

ex
-

pl
ai

ne
d

be
lo

w
.
E

2
R

m
⇥
K

is
an

em
be

dd
in

g
m

at
rix

.
Le

t
m

an
d
n

de
no

te
th

e
em

be
dd

in
g

an
d

LS
TM

di
m

en
si

on
al

ity
re

sp
ec

tiv
el

y
an

d
�

an
d
�

be
th

e
lo

gi
st

ic
si

gm
oi

d
ac

tiv
at

io
n

an
d

el
em

en
t-w

is
e

m
ul

tip
lic

at
io

n
re

sp
ec

tiv
el

y.

In
si

m
pl

e
te

rm
s,

th
e

co
nt

ex
tv

ec
to

rˆ z
t

(e
qu

at
io

ns
(1

)–
(3

))
is

a
dy

na
m

ic
re

pr
es

en
ta

tio
n

of
th

e
re

le
va

nt
pa

rt
of

th
e

im
ag

e
in

pu
ta

tt
im

e
t.

W
e

de
fin

e
a

m
ec

ha
ni

sm
�

th
at

co
m

pu
te

s
ˆ

z

t

fr
om

th
e

an
no

ta
tio

n
ve

ct
or

sa
i

,i
=

1
,.
..
,L

co
rr

es
po

nd
in

g
to

th
e

fe
at

ur
es

ex
tra

ct
ed

at
di

ff
er

en
ti

m
ag

e
lo

ca
tio

ns
.

Fo
r

ea
ch

lo
ca

tio
n
i,

th
e

m
ec

ha
ni

sm
ge

ne
ra

te
s

a
po

si
tiv

e
w

ei
gh

t
↵
i

w
hi

ch
ca

n
be

in
te

rp
re

te
d

ei
th

er
as

th
e

pr
ob

ab
ili

ty
th

at
lo

ca
tio

n
i

is
th

e
rig

ht
pl

ac
e

to
fo

cu
s

fo
rp

ro
du

ci
ng

th
e

ne
xt

w
or

d
(th

e
“h

ar
d”

bu
ts

to
ch

as
tic

at
te

nt
io

n
m

ec
ha

ni
sm

),
or

as
th

e
re

la
tiv

e
im

po
rta

nc
e

to
gi

ve
to

lo
ca

tio
n
i

in
bl

en
di

ng
th

e
a
i

’s
to

ge
th

er
.

Th
e

w
ei

gh
t↵

i

of
ea

ch
an

no
ta

tio
n

ve
ct

or
a
i

is
co

m
pu

te
d

by
an

a
t
t
e
n
t
i
o
n

m
o
d
e
l
f a

tt
fo

r
w

hi
ch

w
e

us
e

a
m

ul
til

ay
er

pe
rc

ep
tro

n
co

nd
iti

on
ed

on
th

e
pr

ev
io

us
hi

dd
en

st
at

e
h
t
�
1
.

Th
e

so
ft

ve
rs

io
n

of
th

is
at

te
nt

io
n

m
ec

ha
ni

sm
w

as
in

tro
du

ce
d

by
B

ah
da

na
u

et
al

.(
20

14
).

Fo
r

em
ph

as
is

,
w

e
no

te
th

at
th

e
hi

dd
en

st
at

e
va

rie
s

as
th

e
ou

tp
ut

R
N

N
ad

-
va

nc
es

in
its

ou
tp

ut
se

qu
en

ce
:

“w
he

re
”

th
e

ne
tw

or
k

lo
ok

s
ne

xt
de

pe
nd

s
on

th
e

se
qu

en
ce

of
w

or
ds

th
at

ha
s

al
re

ad
y

be
en

ge
ne

ra
te

d.

e t
i

=
f a

tt(
a

i

,h
t
�
1
)

(4
)

↵
t
i

=

e
x
p
(
e t

i

)

P
L k
=
1
e
x
p
(
e t

k

)

.
(5

)

O
nc

e
th

e
w

ei
gh

ts
(w

hi
ch

su
m

to
on

e)
ar

e
co

m
pu

te
d,

th
e

co
nt

ex
tv

ec
to

rẑ
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Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along
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in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
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• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
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descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
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two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using T
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Here, i
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are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ˆ

z 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ˆz
t

(equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ˆz

t

from the annotation vectors a
i

, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵
i

which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
a
i

’s together. The weight ↵
i

of each annotation vector a
i

is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state h

t�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed
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In this work, we use a deep output layer (Pascanu et al.,
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4. Learning Stochastic “Hard” vs
Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable s
t

as where the model
decides to focus attention when generating the tth word.
s
t,i

is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵
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as a random variable:
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We define a new objective function L
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that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
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two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along
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We define a new objective function L
s

that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing L
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closely follows the one used in Zaremba et al. (2014) (see
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Here, i
t

, f
t

, c
t

, o
t

, h
t

are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ˆ

z 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ˆz
t

(equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ˆz

t

from the annotation vectors a
i

, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵
i

which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
a
i

’s together. The weight ↵
i

of each annotation vector a
i

is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state h

t�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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Once the weights (which sum to one) are computed, the
context vector ẑ
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is computed by
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where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:
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are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs
Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention
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We define a new objective function L
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that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing L
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A variational lower bound of 
maximum likelihood

Lz =
∑

z∈

log p(y | z)
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Training
• Adam for Flickr30k/MS COCO, RM-SProp on Flickr8k 
• VGG to produce the annotations a_i pertained on ImageNet 

without fine-tuning (19 layers) 
‣ 14x14x512 feature map of the fourth convolutional layer 
‣ Flattened 196 x 512 (L x D) annotation (encoder) 
‣ small kernels (3x3) with stride 1 (no loss of information) 

• Mini-batches are built so that they data with captions of the 
same length are taken 

• MS COCO + Soft attention on NVIDIA Titan Black <= 3 days 
of training 

• Dropout + early stopping on BLEU scores 
• Code in Theano

26

Network Design 

Key design choices: 
• 3x3 conv. kernels – very small 
• conv. stride 1 – no loss of information 

 
Other details: 
• Rectification (ReLU) non-linearity 
• 5 max-pool layers (x2 reduction) 
• no normalisation 
• 3 fully-connected (FC) layers 

4 
image 

conv-64 
conv-64 
maxpool 

FC-4096 
FC-4096 
FC-1000 
softmax 

conv-128 
conv-128 
maxpool 

conv-256 
conv-256 
maxpool 

conv-512 
conv-512 
maxpool 

conv-512 
conv-512 
maxpool 
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Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along
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erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
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sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
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Both Vinyals et al. (2014) and Donahue et al. (2014) use
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two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location s

t

from a multinouilli distribution defined by Equation 8.
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�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
kth mini-batch, the moving average baseline is estimated
as an accumulated sum of the previous log likelihoods with
exponential decay:

b
k

= 0.9⇥ b
k�1 + 0.1⇥ log p(y | s̃

k

,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �
r

and �
e

are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({a
i

} , {↵
i

})
from Equation 6 is a function that returns a sampled a

i

at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location s

t

each time, instead we can take the expecta-
tion of the context vector ˆz

t

directly,

E
p(st|a)[ˆzt] =

LX

i=1

↵
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i

(13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({a

i

} , {↵
i

}) =

P
L

i

↵
i

a

i

as introduced by Bahdanau
et al. (2014). This corresponds to feeding in a soft ↵
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Instead, here we describe a more recently proposed approach
based on the attention-based encoder–decoder framework in
[22].

Fig. 4. Graphical illustration of the attention-based encoder–decoder model
for image caption generation.

1) Model Description: The usual encoder–decoder based
image caption generation models use the activation of the
last fully-connected hidden layer as the continuous-space
representation, or the context vector, of the input image (see
Sec. II-D.) The authors of [22] however proposed to use the
activation from the last convolutional layer of the pre-trained
convolutional network, as in the bottom half of Fig. 4.

Unlike the fully-connected layer, in this case, the context set
consists of multiple vectors that correspond to different spatial
regions of the input image on which the attention mechanism
can be applied. Furthermore, due to convolution and pooling,
the spatial locations in pixel space represented by each con-
text vector overlaps substantially with those represented by
the neighbouring context vectors, which helps the attention
mechanism distinguish similar objects in an image using its
context information with respect to the whole image, or the
neighbouring pixels.

Similarly to the attention-based neural machine translation
in Sec. IV-A, the decoder is implemented as a conditional
RNN-LM. In [22], the content-based attention mechanism (see
Eq. (16)) with either the weighted sum (see Eq. (13)) or
hard decision (see Eq. (14) was tested by training a model
with the maximum likelihood estimator from Sec. III-C1 and
the variational learning from Sec. III-C2, respectively. The
authors of [22] reported the similar performances with these
two approaches on a number of benchmark datasets.

2) Experimental Result: In [22], the attention-based image
caption generator was evaluated on three datasets; Flickr
8K [47], Flickr 30K [48] and MS CoCo [49]. In addition to
the self-evaluation, an ensemble of multiple attention-based
models was submitted to Microsoft COCO Image Captioning
Challenge6 and evaluated with multiple automatic evaluation
metrics7 as well as by human evaluators.

6https://www.codalab.org/competitions/3221
7 BLEU [50], METEOR [51], ROUGE-L [52] and CIDEr [53].

TABLE III
THE PERFORMANCES OF THE IMAGE CAPTION GENERATION MODELS IN
THE MICROSOFT COCO IMAGE CAPTIONING CHALLENGE. (?) [20], (•)

[18], (�) [45], (⇧) [46] AND (⇤) [22]. THE ROWS ARE SORTED
ACCORDING TO M1.

Human Automatic
Model M1 M2 BLEU CIDEr
Human 0.638 0.675 0.471 0.91

Google? 0.273 0.317 0.587 0.946
MSR• 0.268 0.322 0.567 0.925

Attention-based⇤ 0.262 0.272 0.523 0.878
Captivator� 0.250 0.301 0.601 0.937

Berkeley LRCN⇧ 0.246 0.268 0.534 0.891

In this Challenge, the attention-based approach ranked third
based on the percentage of captions that are evaluated as better
or equal to human caption (M1) and the percentage of captions
that pass the Turing Test (M2). Interestingly, the same model
was ranked eighth according to the most recently proposed
metric of CIDEr and ninth according to the most widely used
metric of BLEU.8 It means that this model has better relative
performance in terms of human evaluation than in terms of the
automatic metrics, which only look at matching subsequences
of words, not directly at the meaning of the generated sentence.
The performance of the top-ranked systems, including the
attention-based model from [22], are listed in Table III.

The attention-based model was further found to be highly
interpretable, especially, compared to the simple encoder–
decoder models. See Fig. 5 for some examples.

C. Video Description Generation
Soon after the neural machine translation based on the

simple encoder–decoder framework was proposed in [25],
[3], it was further applied to video description generation,
which amounts to translating a (short) video clip to its natural
language description [28]. The authors of [28] used a pre-
trained convolutional network (see Sec. II-D) to extract a
feature vector from each frame of the video clip and average all
the frame-specific vectors to obtain a single fixed-dimensional
context vector of the whole video. A conditional RNN-LM
from Sec. II-B was used to generate a description based on
this context vector.

Since any video clip clearly has both temporal and spatial
structures, it is possible to exploit them by using the attention
mechanism described throughout this paper. In [23], the au-
thors proposed an approach based on the attention mechanism
to exploit the global and local temporal structures of the video
clips. Here we briefly describe their approach.

1) Model Description: In [23], two different types of
encoders are tested. The first one is a simple frame-wise
application of the pre-trained convolutional network. However,
they did not pool those per-frame context vectors as was done
in [28], but simply form a context set consisting of all the per-
frame feature vectors. The attention mechanism will work to
select one of those per-frame vectors for each output symbol
being decoded. In this way, the authors claimed that the overall
model captures the global temporal structure (the structure
across many frames, potentially across the whole video clip.)

8http://mscoco.org/dataset/#leaderboard-cap

M1 - humans preferred (or equal) the method over human annotation
M2 - turing test
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Machine Learning Translation
• D. Bahdanu et. al. “Neural machine translation by jointly learning to align and translate”
• Make neural machine translation more robust to long sentences
• Bidirectional recurrent neural network (BiRNN) as encoder 
• Context vector is a concatenation of the forward and backward networks
• BiRNN is crucial as the context information from the whole sentence is important
• Results comparable with the State-of-the-art SMT
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Once the gradient is estimated, any usual gradient-based
iterative optimization algorithm can be used to approximately
maximize the log-likelihood.

IV. APPLICATIONS

In this section, we introduce some of the recent work in
which the attention-based encoder–decoder model was applied
to various multimedia description generation tasks.

A. Neural Machine Translation
Machine translation is a task in which a sentence in one

language (source) is translated into a corresponding sentence
in another language (target). Neural machine translation aims
at solving it with a single neural network based model, jointly
trained end-to-end. The encoder–decoder framework described
in Sec. III-A was proposed for neural machine translation
recently in [24], [3], [25]. Based on these works, in [32], the
attention-based model was proposed to make neural machine
translation systems more robust to long sentences. Here, we
briefly describe the model from [32].

1) Model Description: The attention-based neural machine
translation in [32] uses a bidirectional recurrent neural network
(BiRNN) as an encoder. The forward network reads the input
sentence x = (x1, . . . , xT ) from the first word to the last,
resulting in a sequence of state vectors

n�!
h 1,
�!
h 2, . . . ,

�!
h T

o

.

The backward network, on the other hand, reads the input
sentence in the reverse order, resulting in

n �
h T ,
 �
h T�1, . . . ,

 �
h 1

o

.

These vectors are concatenated per step to form a context set
(see Sec. III-B2) such that ct =

h�!
h t;
 �
h t

i

.

Fig. 3. Illustration of a single
step of decoding in attention-based
neural machine translation [32].

The use of the BiRNN is crucial if the content-based
attention mechanism is used. The content-based attention
mechanism in Eqs. (16) and (11) relies solely on a so-called
content-based scoring, and without the context information
from the whole sentence, words that appear multiple times
in a source sentence cannot be distinguished by the attention
model.

The decoder is a conditional RNN-LM that models the
target language given the context set from above. See Fig. 3 for

the graphical illustration of the attention-based neural machine
translation model.

TABLE I
THE TRANSLATION PERFORMANCES AND THE RELATIVE IMPROVEMENTS

OVER THE SIMPLE ENCODER-DECODER MODEL ON AN
ENGLISH-TO-FRENCH TRANSLATION TASK, MEASURED BY BLEU [32],

[42]. ?: AN ENSEMBLE OF MULTIPLE ATTENTION-BASED MODELS. �: THE
STATE-OF-THE-ART PHRASE-BASED STATISTICAL MACHINE TRANSLATION

SYSTEM [43].

Model BLEU Rel. Improvement
Simple Enc–Dec 17.82 –

Attention-based Enc–Dec 28.45 +59.7%
Attention-based Enc–Dec (LV) 34.11 +90.7%

Attention-based Enc–Dec (LV)? 37.19 +106.0%

State-of-the-art SMT� 37.03 –

2) Experimental Result: Given a fixed model size, the
attention-based model proposed in [32] was able to achieve
a relative improvement of more than 50% in the case of the
English-to-French translation task, as shown in Table I. When
the very same model was extended with a very large target
vocabulary [42], the relative improvement over the baseline
without the attention mechanism was 90%. Additionally, the
very same model was recently tested on a number of European
language pairs at the WMT’15 Translation Task.5. See Table II
for the results.

The authors of [44] recently proposed a method for in-
corporating a monolingual language model into the attention-
based neural machine translation system. With this method, the
attention-based model was shown to outperform the existing
statistical machine translation systems on Chinese-to-English
(restricted domains) and Turkish-to-English translation tasks
as well as other European languages they tested.

B. Image Caption Generation
Image caption generation is a task in which a model looks

at an input image and generates a corresponding natural
language description. The encoder–decoder framework fits
well with this task. The encoder will extract the continuous-
space representation, or the context, of an input image, for
instance, with a deep convolutional network (see Sec. II-C,)
and from this representation the conditional RNN-LM based
decoder generates a natural language description of the image.
Very recently (Dec 2014), a number of research groups inde-
pendently proposed to use the simple encoder–decoder model
to solve the image caption generation [18], [17], [19], [20].
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Once the gradient is estimated, any usual gradient-based
iterative optimization algorithm can be used to approximately
maximize the log-likelihood.

IV. APPLICATIONS

In this section, we introduce some of the recent work in
which the attention-based encoder–decoder model was applied
to various multimedia description generation tasks.

A. Neural Machine Translation
Machine translation is a task in which a sentence in one

language (source) is translated into a corresponding sentence
in another language (target). Neural machine translation aims
at solving it with a single neural network based model, jointly
trained end-to-end. The encoder–decoder framework described
in Sec. III-A was proposed for neural machine translation
recently in [24], [3], [25]. Based on these works, in [32], the
attention-based model was proposed to make neural machine
translation systems more robust to long sentences. Here, we
briefly describe the model from [32].

1) Model Description: The attention-based neural machine
translation in [32] uses a bidirectional recurrent neural network
(BiRNN) as an encoder. The forward network reads the input
sentence x = (x1, . . . , xT ) from the first word to the last,
resulting in a sequence of state vectors

n�!
h 1,
�!
h 2, . . . ,

�!
h T

o

.

The backward network, on the other hand, reads the input
sentence in the reverse order, resulting in
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Fig. 3. Illustration of a single
step of decoding in attention-based
neural machine translation [32].

The use of the BiRNN is crucial if the content-based
attention mechanism is used. The content-based attention
mechanism in Eqs. (16) and (11) relies solely on a so-called
content-based scoring, and without the context information
from the whole sentence, words that appear multiple times
in a source sentence cannot be distinguished by the attention
model.

The decoder is a conditional RNN-LM that models the
target language given the context set from above. See Fig. 3 for

the graphical illustration of the attention-based neural machine
translation model.
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as well as other European languages they tested.

B. Image Caption Generation
Image caption generation is a task in which a model looks

at an input image and generates a corresponding natural
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well with this task. The encoder will extract the continuous-
space representation, or the context, of an input image, for
instance, with a deep convolutional network (see Sec. II-C,)
and from this representation the conditional RNN-LM based
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Applications

Video Description Generation
• L. Yao et. al. “Describing videos by exploiting temporal structure”
• Two encoders

• Context set consists of per-frame context vectors, and attention mechanism that selects one of those vectors  
for each output symbol being decoded - capturing the global temporal structure across frames

• 3-D conv-net that applies local filters across spation-temporal dimensions working on motion statistics
• Both encoders are complementary

8

Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding
word) [22]

Fig. 6. The 3-D convolutional network for motion from [23].

The other type of encoder in [23] is a so-called 3-D
convolutional network, shown in Fig. 6. Unlike the usual
convolutional network which often works only spatially over a
two-dimensional image, the 3-D convolutional network applies
its (local) filters across the spatial dimensions as well as the
temporal dimensions. Furthermore, those filters work not on
pixels but on local motion statistics, enabling the model to
concentrate on motion rather than appearance. Similarly to
the strategy from Sec. II-D, the model was trained on larger
video datasets to recognize an action from each video clip, and
the activation vectors from the last convolutional layer were
used as context. The authors of [23] suggest that this encoder
extracts more local temporal structures complementing the
global structures extracted from the frame-wise application of
a 2-D convolutional network.

The same type of decoder, a conditional RNN-LM, used in
[22] was used with the content-based attention mechanism in
Eq. (16).

2) Experimental Result: In [23], this approach to video
description generation has been tested on two datasets; (1)
Youtube2Text [54] and (2) Montreal DVS [55]. They showed
that it is beneficial to have both types of encoders together
in their attention-based encoder–decoder model, and that
the attention-based model outperforms the simple encoder–
decoder model. See Table IV for the summary of the evalua-
tion.

TABLE IV
THE PERFORMANCE OF THE VIDEO DESCRIPTION GENERATION MODELS
ON YOUTUBE2TEXT AND MONTREAL DVS. (?) HIGHER THE BETTER.

(�) LOWER THE BETTER.

Youtube2Text Montreal DVS
Model METEOR? Perplexity� METEOR Perplexity

Enc-Dec 0.2868 33.09 0.044 88.28
+ 3-D CNN 0.2832 33.42 0.051 84.41

+ Per-frame CNN 0.2900 27.89 .040 66.63
+ Both 0.2960 27.55 0.057 65.44

Similarly to all the other previous applications of the
attention-based model, the attention mechanism applied to the
task of video description also provides a straightforward way
to inspect the inner workings of the model. See Fig. 7 for
some examples.

Fig. 7. Two sample videos and their corresponding generated and ground-
truth descriptions from Youtube2Text. The bar plot under each frame cor-
responds to the attention weight ↵

t
j (see Eq. (11)) for the frame when the

corresponding word (color-coded) was generated. Reprinted from [23].

3-D conv-net
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• Parsing-Grammar
• Machine Translation with a parsing-tree as a ‘target sentence’
• Learnt parsing algorithm performance matches state-of-the-art (domain-specific) parsers
• O. Vinyals et. al. “Grammar as a foreign language”

• (Approximately) Solving combinatorial problems
• Decoder predicts which one of the source symbols/nodes should be chosen at each time step
• TSP 

• Context set = cities in the input graph
• The attention mechanism choses cities
• Generalizes to any discrete optimization problem whose solution is a subset of the input symbols

• O. Vinyals et. al. “Pointer networks”
• Speech Recognition

• Traditional approaches use Deep Nets for the acoustic part to establish a relationship between audio  
(wavelength) and phonemes followed by HMM to map those into sentences

• J. Chorowski et. al. “Attention-based models for speech recognition”
• Encoder is a stacked BiRNN, which reads the input sequence of speech frames
• Context set is the concatenated hidden states of the top-level BiRNN
• Peculiarities (in contrast to the machine translation task)

• Significant difference in the input speech frames and output sequence of words
• Alignment between the input and output symbols is monotonic

• W. Chan et. al. “Listen, Attend and Spell”
• Listener - pyramidal RNN encoder that accepts filter bank spectra as input
• Speller - attention-based RNN decoder that emits characters as outputs

Applications
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So far …
• Attention mechanism in Memory Networks 
‣ Distribution over different data points 
‣ Task is Question Answering about textual story 

• Attention mechanism in Show, Attend, and Tell … 
‣ Visual attention as a normalized time-dependent linear map
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Output side: Each memory vector on the input has a corresponding output vector ci, given by
another embedding matrix C applied to sentence xi:

ci =
X

j

Cxij .

The output vector from the memory o is then a sum over the ci, weighted by the probability vector
from the input:

o =
X

i

pici =
X

i

X

j

piCxij (2)

Because the functions from input sentences and question to output is smooth, we can easily compute
gradients and back-propagate through it. Other recently proposed forms of memory or attention take
this approach, notably Graves et al. (2014) and Bahdanau et al. (2015).

Answer prediction: In the single layer case, the sum of the output vector o and the question em-
bedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax to produce
the predicted answer:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1. During training, all three embedding matrices A, B and C, as
well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
answer a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).

Question  
q!

O
utput 

Input 
Embedding B!

Embedding C!

W
eights Softmax 

Sum 

pi!

ci!

mi!

Sentences 
 {xi}!

Embedding A!

o! Σ W! Softm
ax 

Predicted  
Answer  
a!^!

u!

u!

Figure 1: A single layer version of our model.
2.2 Multiple Layers
The single memory layer proposed is only able to answer questions that involve a single memory
lookup. However, if a retrieved memory depends on another memory (e.g. as in the example from
Section 2), then multiple lookups are required to answer the question. Thus, as in the original
Memory Networks approach, we now extend our model to handle multiple lookup operations, or
hops.

The memory layers are stacked in the following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer
k:

uk+1 = uk + ok. (4)
• Each layer has its own embedding matrices Ak, Ck, used to embed the input sentences

{xi}. However, as discussed below, they are constrained to ease training and reduce the
number of parameters.

3

7

Instead, here we describe a more recently proposed approach
based on the attention-based encoder–decoder framework in
[22].
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Fig. 4. Graphical illustration of the attention-based encoder–decoder model
for image caption generation.

1) Model Description: The usual encoder–decoder based
image caption generation models use the activation of the
last fully-connected hidden layer as the continuous-space
representation, or the context vector, of the input image (see
Sec. II-D.) The authors of [22] however proposed to use the
activation from the last convolutional layer of the pre-trained
convolutional network, as in the bottom half of Fig. 4.

Unlike the fully-connected layer, in this case, the context set
consists of multiple vectors that correspond to different spatial
regions of the input image on which the attention mechanism
can be applied. Furthermore, due to convolution and pooling,
the spatial locations in pixel space represented by each con-
text vector overlaps substantially with those represented by
the neighbouring context vectors, which helps the attention
mechanism distinguish similar objects in an image using its
context information with respect to the whole image, or the
neighbouring pixels.

Similarly to the attention-based neural machine translation
in Sec. IV-A, the decoder is implemented as a conditional
RNN-LM. In [22], the content-based attention mechanism (see
Eq. (16)) with either the weighted sum (see Eq. (13)) or
hard decision (see Eq. (14) was tested by training a model
with the maximum likelihood estimator from Sec. III-C1 and
the variational learning from Sec. III-C2, respectively. The
authors of [22] reported the similar performances with these
two approaches on a number of benchmark datasets.

2) Experimental Result: In [22], the attention-based image
caption generator was evaluated on three datasets; Flickr
8K [47], Flickr 30K [48] and MS CoCo [49]. In addition to
the self-evaluation, an ensemble of multiple attention-based
models was submitted to Microsoft COCO Image Captioning
Challenge6 and evaluated with multiple automatic evaluation
metrics7 as well as by human evaluators.

6https://www.codalab.org/competitions/3221
7 BLEU [50], METEOR [51], ROUGE-L [52] and CIDEr [53].

TABLE III
THE PERFORMANCES OF THE IMAGE CAPTION GENERATION MODELS IN
THE MICROSOFT COCO IMAGE CAPTIONING CHALLENGE. (?) [20], (•)

[18], (�) [45], (⇧) [46] AND (⇤) [22]. THE ROWS ARE SORTED
ACCORDING TO M1.

Human Automatic
Model M1 M2 BLEU CIDEr
Human 0.638 0.675 0.471 0.91

Google? 0.273 0.317 0.587 0.946
MSR• 0.268 0.322 0.567 0.925

Attention-based⇤ 0.262 0.272 0.523 0.878
Captivator� 0.250 0.301 0.601 0.937

Berkeley LRCN⇧ 0.246 0.268 0.534 0.891

In this Challenge, the attention-based approach ranked third
based on the percentage of captions that are evaluated as better
or equal to human caption (M1) and the percentage of captions
that pass the Turing Test (M2). Interestingly, the same model
was ranked eighth according to the most recently proposed
metric of CIDEr and ninth according to the most widely used
metric of BLEU.8 It means that this model has better relative
performance in terms of human evaluation than in terms of the
automatic metrics, which only look at matching subsequences
of words, not directly at the meaning of the generated sentence.
The performance of the top-ranked systems, including the
attention-based model from [22], are listed in Table III.

The attention-based model was further found to be highly
interpretable, especially, compared to the simple encoder–
decoder models. See Fig. 5 for some examples.

C. Video Description Generation
Soon after the neural machine translation based on the

simple encoder–decoder framework was proposed in [25],
[3], it was further applied to video description generation,
which amounts to translating a (short) video clip to its natural
language description [28]. The authors of [28] used a pre-
trained convolutional network (see Sec. II-D) to extract a
feature vector from each frame of the video clip and average all
the frame-specific vectors to obtain a single fixed-dimensional
context vector of the whole video. A conditional RNN-LM
from Sec. II-B was used to generate a description based on
this context vector.

Since any video clip clearly has both temporal and spatial
structures, it is possible to exploit them by using the attention
mechanism described throughout this paper. In [23], the au-
thors proposed an approach based on the attention mechanism
to exploit the global and local temporal structures of the video
clips. Here we briefly describe their approach.

1) Model Description: In [23], two different types of
encoders are tested. The first one is a simple frame-wise
application of the pre-trained convolutional network. However,
they did not pool those per-frame context vectors as was done
in [28], but simply form a context set consisting of all the per-
frame feature vectors. The attention mechanism will work to
select one of those per-frame vectors for each output symbol
being decoded. In this way, the authors claimed that the overall
model captures the global temporal structure (the structure
across many frames, potentially across the whole video clip.)

8http://mscoco.org/dataset/#leaderboard-cap
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(a) 60x60 Cluttered Translated MNIST
Model Error
FC, 2 layers (64 hiddens each) 28.96%
FC, 2 layers (256 hiddens each) 13.2%
Convolutional, 2 layers 7.83%
RAM, 4 glimpses, 12⇥ 12, 3 scales 7.1%
RAM, 6 glimpses, 12⇥ 12, 3 scales 5.88%
RAM, 8 glimpses, 12⇥ 12, 3 scales 5.23%

(b) 100x100 Cluttered Translated MNIST
Model Error
Convolutional, 2 layers 16.51%
RAM, 4 glimpses, 12⇥ 12, 4 scales 14.95%
RAM, 6 glimpses, 12⇥ 12, 4 scales 11.58%
RAM, 8 glimpses, 12⇥ 12, 4 scales 10.83%

Table 2: Classification on the Cluttered Translated MNIST dataset. FC denotes a fully-connected
network with two layers of rectifier units. The convolutional network had one layer of 8 10 ⇥ 10

filters with stride 5, followed by a fully connected layer with 256 units in the 60 ⇥ 60 case and
86 units in the 100 ⇥ 100 case with rectifiers after each layer. Instances of the attention model are
labeled with the number of glimpses, the size of the retina, and the number of scales in the retina.
All models except for the big fully connected network had roughly the same number of parameters.

Figure 3: Examples of the learned policy on 60 ⇥ 60 cluttered-translated MNIST task. Column 1:
The input image with glimpse path overlaid in green. Columns 2-7: The six glimpses the network
chooses. The center of each image shows the full resolution glimpse, the outer low resolution areas
are obtained by upscaling the low resolution glimpses back to full image size. The glimpse paths
clearly show that the learned policy avoids computation in empty or noisy parts of the input space
and directly explores the area around the object of interest.

attains a significantly lower error rate of 2.3% than the fully connected networks. However, RAM
with 4 glimpses gets roughly the same performance as the convolutional network and outperforms
it for 6 and 8 glimpses, reaching roughly 1.9% error. This is possible because the attention model
can focus its retina on the digit and hence learn a translation invariant policy. This experiment also
shows that the attention model is able to successfully search for an object in a big image when the
object is not centered.

Cluttered Non-Centered Digits: One of the most challenging aspects of classifying real-world
images is the presence of a wide range clutter. Systems that operate on the entire image at full
resolution are particularly susceptible to clutter and must learn to be invariant to it. One possible
advantage of an attention mechanism is that it may make it easier to learn in the presence of clutter
by focusing on the relevant part of the image and ignoring the irrelevant part. We test this hypothesis
with several experiments on a new task we call Cluttered Translated MNIST. Data for this task was
generated by first placing an MNIST digit in a random location of a larger blank image and then
adding random 8 by 8 subpatches from other random MNIST digits to random locations of the
image. The goal is to classify the complete digit present in the image. Figure 2b shows a random
sample of test cases for the 60 by 60 Cluttered Translated MNIST task.

Table 2a shows the classification results for the models we trained on 60 by 60 Cluttered Translated
MNIST with 4 pieces of clutter. The presence of clutter makes the task much more difficult but the
performance of the attention model is affected less than the performance of the other models. RAM
with 4 glimpses reaches 7.1% error, which outperforms fully-connected models by a wide margin
and the convolutional neural network by 0.7%, and RAM trained with 6 and 8 glimpses achieves
even lower error. Since RAM achieves larger relative error improvements over a convolutional
network in the presence of clutter these results suggest the attention-based models may be better at
dealing with clutter than convolutional networks because they can simply ignore it by not looking at

7

Glimpse-driven mechanism

Neural Image Caption Generation with Visual Attention

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along
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Motivation
• Applying CNN is expensive 
• Framework that 
‣ Selects a sequence of regions 
‣ Scales up independently of the image size 
‣ 4 x fewer floating point operations than CNN 

• Model is non-differentiable  
‣ Reinforcement learning as a rescue
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Figure 1: A) Glimpse Sensor: Given the coordinates of the glimpse and an input image, the sen-
sor extracts a retina-like representation ⇢(xt, lt�1) centered at lt�1 that contains multiple resolution
patches. B) Glimpse Network: Given the location (lt�1) and input image (xt), uses the glimpse
sensor to extract retina representation ⇢(xt, lt�1). The retina representation and glimpse location is
then mapped into a hidden space using independent linear layers parameterized by ✓

0
g and ✓

1
g respec-

tively using rectified units followed by another linear layer ✓2g to combine the information from both
components. The glimpse network fg(.; {✓0g , ✓1g , ✓2g}) defines a trainable bandwidth limited sensor
for the attention network producing the glimpse representation gt. C) Model Architecture: Overall,
the model is an RNN. The core network of the model fh(.; ✓h) takes the glimpse representation gt as
input and combining with the internal representation at previous time step ht�1, produces the new
internal state of the model ht. The location network fl(.; ✓l) and the action network fa(.; ✓a) use the
internal state ht of the model to produce the next location to attend to lt and the action/classification
at respectively. This basic RNN iteration is repeated for a variable number of steps.

information only in a local region or in a narrow frequency band. The agent can, however, actively
control how to deploy its sensor resources (e.g. choose the sensor location). The agent can also
affect the true state of the environment by executing actions. Since the environment is only partially
observed the agent needs to integrate information over time in order to determine how to act and
how to deploy its sensor most effectively. At each step, the agent receives a scalar reward (which
depends on the actions the agent has executed and can be delayed), and the goal of the agent is to
maximize the total sum of such rewards.

This formulation encompasses tasks as diverse as object detection in static images and control prob-
lems like playing a computer game from the image stream visible on the screen. For a game, the
environment state would be the true state of the game engine and the agent’s sensor would operate
on the video frame shown on the screen. (Note that for most games, a single frame would not fully
specify the game state). The environment actions here would correspond to joystick controls, and
the reward would reflect points scored. For object detection in static images the state of the envi-
ronment would be fixed and correspond to the true contents of the image. The environmental action
would correspond to the classification decision (which may be executed only after a fixed number
of fixations), and the reward would reflect if the decision is correct.

3.1 Model
The agent is built around a recurrent neural network as shown in Fig. 1. At each time step, it
processes the sensor data, integrates information over time, and chooses how to act and how to
deploy its sensor at next time step:

Sensor: At each step t the agent receives a (partial) observation of the environment in the form of
an image xt. The agent does not have full access to this image but rather can extract information
from xt via its bandwidth limited sensor ⇢, e.g. by focusing the sensor on some region or frequency
band of interest.

In this paper we assume that the bandwidth-limited sensor extracts a retina-like representation
⇢(xt, lt�1) around location lt�1 from image xt. It encodes the region around l at a high-resolution
but uses a progressively lower resolution for pixels further from l, resulting in a vector of much

3

Retina representation

Bandwidth limited 
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location 
network
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The network (agent) can actively 
control how to deploy its sensor 
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(a) 60x60 Cluttered Translated MNIST
Model Error
FC, 2 layers (64 hiddens each) 28.96%
FC, 2 layers (256 hiddens each) 13.2%
Convolutional, 2 layers 7.83%
RAM, 4 glimpses, 12⇥ 12, 3 scales 7.1%
RAM, 6 glimpses, 12⇥ 12, 3 scales 5.88%
RAM, 8 glimpses, 12⇥ 12, 3 scales 5.23%

(b) 100x100 Cluttered Translated MNIST
Model Error
Convolutional, 2 layers 16.51%
RAM, 4 glimpses, 12⇥ 12, 4 scales 14.95%
RAM, 6 glimpses, 12⇥ 12, 4 scales 11.58%
RAM, 8 glimpses, 12⇥ 12, 4 scales 10.83%

Table 2: Classification on the Cluttered Translated MNIST dataset. FC denotes a fully-connected
network with two layers of rectifier units. The convolutional network had one layer of 8 10 ⇥ 10

filters with stride 5, followed by a fully connected layer with 256 units in the 60 ⇥ 60 case and
86 units in the 100 ⇥ 100 case with rectifiers after each layer. Instances of the attention model are
labeled with the number of glimpses, the size of the retina, and the number of scales in the retina.
All models except for the big fully connected network had roughly the same number of parameters.

Figure 3: Examples of the learned policy on 60 ⇥ 60 cluttered-translated MNIST task. Column 1:
The input image with glimpse path overlaid in green. Columns 2-7: The six glimpses the network
chooses. The center of each image shows the full resolution glimpse, the outer low resolution areas
are obtained by upscaling the low resolution glimpses back to full image size. The glimpse paths
clearly show that the learned policy avoids computation in empty or noisy parts of the input space
and directly explores the area around the object of interest.

attains a significantly lower error rate of 2.3% than the fully connected networks. However, RAM
with 4 glimpses gets roughly the same performance as the convolutional network and outperforms
it for 6 and 8 glimpses, reaching roughly 1.9% error. This is possible because the attention model
can focus its retina on the digit and hence learn a translation invariant policy. This experiment also
shows that the attention model is able to successfully search for an object in a big image when the
object is not centered.

Cluttered Non-Centered Digits: One of the most challenging aspects of classifying real-world
images is the presence of a wide range clutter. Systems that operate on the entire image at full
resolution are particularly susceptible to clutter and must learn to be invariant to it. One possible
advantage of an attention mechanism is that it may make it easier to learn in the presence of clutter
by focusing on the relevant part of the image and ignoring the irrelevant part. We test this hypothesis
with several experiments on a new task we call Cluttered Translated MNIST. Data for this task was
generated by first placing an MNIST digit in a random location of a larger blank image and then
adding random 8 by 8 subpatches from other random MNIST digits to random locations of the
image. The goal is to classify the complete digit present in the image. Figure 2b shows a random
sample of test cases for the 60 by 60 Cluttered Translated MNIST task.

Table 2a shows the classification results for the models we trained on 60 by 60 Cluttered Translated
MNIST with 4 pieces of clutter. The presence of clutter makes the task much more difficult but the
performance of the attention model is affected less than the performance of the other models. RAM
with 4 glimpses reaches 7.1% error, which outperforms fully-connected models by a wide margin
and the convolutional neural network by 0.7%, and RAM trained with 6 and 8 glimpses achieves
even lower error. Since RAM achieves larger relative error improvements over a convolutional
network in the presence of clutter these results suggest the attention-based models may be better at
dealing with clutter than convolutional networks because they can simply ignore it by not looking at

7
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Sensor - agent receives a (partial) observation of the environment through bandwidth 
limited sensor
Actions - deploy sensor via the sensor control, and perform an environment action
Reward -                           e.g.              if the object is classified correctly for detection

lower dimensionality than the original image x. We will refer to this low-resolution representation
as a glimpse [14]. The glimpse sensor is used inside what we call the glimpse network fg to produce
the glimpse feature vector gt = fg(xt, lt�1; ✓g) where ✓g = {✓0g , ✓1g , ✓2g} (Fig. 1B).

Internal state: The agent maintains an interal state which summarizes information extracted from
the history of past observations; it encodes the agent’s knowledge of the environment and is in-
strumental to deciding how to act and where to deploy the sensor. This internal state is formed
by the hidden units ht of the recurrent neural network and updated over time by the core network:
ht = fh(ht�1, gt; ✓h). The external input to the network is the glimpse feature vector gt.

Actions: At each step, the agent performs two actions: it decides how to deploy its sensor via the
sensor control lt, and an environment action at which might affect the state of the environment.
The nature of the environment action depends on the task. In this work, the location actions are
chosen stochastically from a distribution parameterized by the location network fl(ht; ✓l) at time t:
lt ⇠ p(·|fl(ht; ✓l)). The environment action at is similarly drawn from a distribution conditioned
on a second network output at ⇠ p(·|fa(ht; ✓a)). For classification it is formulated using a softmax
output and for dynamic environments, its exact formulation depends on the action set defined for
that particular environment (e.g. joystick movements, motor control, ...).

Reward: After executing an action the agent receives a new visual observation of the environment
xt+1 and a reward signal rt+1. The goal of the agent is to maximize the sum of the reward signal1

which is usually very sparse and delayed: R =

PT
t=1 rt. In the case of object recognition, for

example, rT = 1 if the object is classified correctly after T steps and 0 otherwise.

The above setup is a special instance of what is known in the RL community as a Partially Observ-
able Markov Decision Process (POMDP). The true state of the environment (which can be static or
dynamic) is unobserved. In this view, the agent needs to learn a (stochastic) policy ⇡((lt, at)|s1:t; ✓)
with parameters ✓ that, at each step t, maps the history of past interactions with the environment
s1:t = x1, l1, a1, . . . xt�1, lt�1, at�1, xt to a distribution over actions for the current time step, sub-
ject to the constraint of the sensor. In our case, the policy ⇡ is defined by the RNN outlined above,
and the history st is summarized in the state of the hidden units ht. We will describe the specific
choices for the above components in Section 4.

3.2 Training
The parameters of our agent are given by the parameters of the glimpse network, the core network
(Fig. 1C), and the action network ✓ = {✓g, ✓h, ✓a} and we learn these to maximize the total reward
the agent can expect when interacting with the environment.

More formally, the policy of the agent, possibly in combination with the dynamics of the environ-
ment (e.g. for game-playing), induces a distribution over possible interaction sequences s1:N and we
aim to maximize the reward under this distribution: J(✓) = Ep(s1:T ;✓)

hPT
t=1 rt

i
= Ep(s1:T ;✓) [R],

where p(s1:T ; ✓) depends on the policy

Maximizing J exactly is non-trivial since it involves an expectation over the high-dimensional inter-
action sequences which may in turn involve unknown environment dynamics. Viewing the problem
as a POMDP, however, allows us to bring techniques from the RL literature to bear: As shown by
Williams [26] a sample approximation to the gradient is given by

r✓J =

TX

t=1

Ep(s1:T ;✓) [r✓ log ⇡(ut|s1:t; ✓)R] ⇡ 1

M

MX

i=1

TX

t=1

r✓ log ⇡(u
i
t|si1:t; ✓)Ri

, (1)

where s

i’s are interaction sequences obtained by running the current agent ⇡✓ for i = 1 . . .M

episodes.

The learning rule (1) is also known as the REINFORCE rule, and it involves running the agent with
its current policy to obtain samples of interaction sequences s1:T and then adjusting the parameters
✓ of our agent such that the log-probability of chosen actions that have led to high cumulative reward
is increased, while that of actions having produced low reward is decreased.

1 Depending on the scenario it may be more appropriate to consider a sum of discounted rewards, where
rewards obtained in the distant future contribute less: R =

PT
t=1 �

t�1rt. In this case we can have T ! 1.
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• Maximize expected reward under the policy 
 

• Gradient with sampling (REINFORCE rule [1]) 
 
 
 
 

• Variance reduction techniques (bias normalization) [3] 
• ‘Natural supervision’ - best actions are unknown and training 

signal comes only through the reward function 
• Explore (samples), exploit (backprop)
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Model - objective
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[1]  R.J, Williams “Simple statistical gradient-following algorithm for connectionist reinforcement learning”
[2] N. de Freitas “Deep Learning Lecture 15”
[3] R. S. Sutton et. al. “Policy gradient methods for reinforcement learning with function approximation”
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(a) 28x28 MNIST
Model Error
FC, 2 layers (256 hiddens each) 1.35%
1 Random Glimpse, 8⇥ 8, 1 scale 42.85%
RAM, 2 glimpses, 8⇥ 8, 1 scale 6.27%
RAM, 3 glimpses, 8⇥ 8, 1 scale 2.7%
RAM, 4 glimpses, 8⇥ 8, 1 scale 1.73%
RAM, 5 glimpses, 8⇥ 8, 1 scale 1.55%
RAM, 6 glimpses, 8⇥ 8, 1 scale 1.29%
RAM, 7 glimpses, 8⇥ 8, 1 scale 1.47%

(b) 60x60 Translated MNIST
Model Error
FC, 2 layers (64 hiddens each) 7.56%
FC, 2 layers (256 hiddens each) 3.7%
Convolutional, 2 layers 2.31%
RAM, 4 glimpses, 12⇥ 12, 3 scales 2.29%
RAM, 6 glimpses, 12⇥ 12, 3 scales 1.86%
RAM, 8 glimpses, 12⇥ 12, 3 scales 1.84%

Table 1: Classification results on the MNIST and Translated MNIST datasets. FC denotes a fully-
connected network with two layers of rectifier units. The convolutional network had one layer of 8
10⇥ 10 filters with stride 5, followed by a fully connected layer with 256 units with rectifiers after
each layer. Instances of the attention model are labeled with the number of glimpses, the number of
scales in the retina, and the size of the retina.

(a) Random test cases for the Translated MNIST
task.

(b) Random test cases for the Cluttered Translated
MNIST task.

Figure 2: Examples of test cases for the Translated and Cluttered Translated MNIST tasks.

4.1 Image Classification

The attention network used in the following classification experiments made a classification decision
only at the last timestep t = N . The action network fa was simply a linear softmax classifier defined
as fa(h) = exp (Linear(h)) /Z, where Z is a normalizing constant. The RNN state vector h had
dimensionality 256. All methods were trained using stochastic gradient descent with momentum of
0.9. Hyperparameters such as the learning rate and the variance of the location policy were selected
using random search [3]. The reward at the last time step was 1 if the agent classified correctly and
0 otherwise. The rewards for all other timesteps were 0.

Centered Digits: We first tested the ability of our training method to learn successful glimpse
policies by using it to train RAM models with up to 7 glimpses on the MNIST digits dataset. The
“retina” for this experiment was simply an 8⇥8 patch, which is only big enough to capture a part of
a digit, hence the experiment also tested the ability of RAM to combine information from multiple
glimpses. Note that since the first glimpse is always random, the single glimpse model is effectively
a classifier that gets a single random 8 ⇥ 8 patch as input. We also trained a standard feedforward
neural network with two hidden layers of 256 rectified linear units as a baseline. The error rates
achieved by the different models on the test set are shown in Table 1a. We see that each additional
glimpse improves the performance of RAM until it reaches its minimum with 6 glimpses, where it
matches the performance of the fully connected model training on the full 28 ⇥ 28 centered digits.
This demonstrates the model can successfully learn to combine information from multiple glimpses.

Non-Centered Digits: The second problem we considered was classifying non-centered digits. We
created a new task called Translated MNIST, for which data was generated by placing an MNIST
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glimpses. Note that since the first glimpse is always random, the single glimpse model is effectively
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glimpses. Note that since the first glimpse is always random, the single glimpse model is effectively
a classifier that gets a single random 8 ⇥ 8 patch as input. We also trained a standard feedforward
neural network with two hidden layers of 256 rectified linear units as a baseline. The error rates
achieved by the different models on the test set are shown in Table 1a. We see that each additional
glimpse improves the performance of RAM until it reaches its minimum with 6 glimpses, where it
matches the performance of the fully connected model training on the full 28 ⇥ 28 centered digits.
This demonstrates the model can successfully learn to combine information from multiple glimpses.

Non-Centered Digits: The second problem we considered was classifying non-centered digits. We
created a new task called Translated MNIST, for which data was generated by placing an MNIST
digit in a random location of a larger blank patch. Training cases were generated on the fly so the
effective training set size was 50000 (the size of the MNIST training set) multiplied by the possible
number of locations. Figure 2a contains a random sample of test cases for the 60 by 60 Translated
MNIST task. Table 1b shows the results for several different models trained on the Translated
MNIST task with 60 by 60 patches. In addition to RAM and two fully-connected networks we
also trained a network with one convolutional layer of 16 10 ⇥ 10 filters with stride 5 followed
by a rectifier nonlinearity and then a fully-connected layer of 256 rectifier units. The convolutional
network, the RAM networks, and the smaller fully connected model all had roughly the same number
of parameters. Since the convolutional network has some degree of translation invariance built in, it
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(a) 60x60 Cluttered Translated MNIST
Model Error
FC, 2 layers (64 hiddens each) 28.96%
FC, 2 layers (256 hiddens each) 13.2%
Convolutional, 2 layers 7.83%
RAM, 4 glimpses, 12⇥ 12, 3 scales 7.1%
RAM, 6 glimpses, 12⇥ 12, 3 scales 5.88%
RAM, 8 glimpses, 12⇥ 12, 3 scales 5.23%

(b) 100x100 Cluttered Translated MNIST
Model Error
Convolutional, 2 layers 16.51%
RAM, 4 glimpses, 12⇥ 12, 4 scales 14.95%
RAM, 6 glimpses, 12⇥ 12, 4 scales 11.58%
RAM, 8 glimpses, 12⇥ 12, 4 scales 10.83%

Table 2: Classification on the Cluttered Translated MNIST dataset. FC denotes a fully-connected
network with two layers of rectifier units. The convolutional network had one layer of 8 10 ⇥ 10

filters with stride 5, followed by a fully connected layer with 256 units in the 60 ⇥ 60 case and
86 units in the 100 ⇥ 100 case with rectifiers after each layer. Instances of the attention model are
labeled with the number of glimpses, the size of the retina, and the number of scales in the retina.
All models except for the big fully connected network had roughly the same number of parameters.

Figure 3: Examples of the learned policy on 60 ⇥ 60 cluttered-translated MNIST task. Column 1:
The input image with glimpse path overlaid in green. Columns 2-7: The six glimpses the network
chooses. The center of each image shows the full resolution glimpse, the outer low resolution areas
are obtained by upscaling the low resolution glimpses back to full image size. The glimpse paths
clearly show that the learned policy avoids computation in empty or noisy parts of the input space
and directly explores the area around the object of interest.

attains a significantly lower error rate of 2.3% than the fully connected networks. However, RAM
with 4 glimpses gets roughly the same performance as the convolutional network and outperforms
it for 6 and 8 glimpses, reaching roughly 1.9% error. This is possible because the attention model
can focus its retina on the digit and hence learn a translation invariant policy. This experiment also
shows that the attention model is able to successfully search for an object in a big image when the
object is not centered.

Cluttered Non-Centered Digits: One of the most challenging aspects of classifying real-world
images is the presence of a wide range clutter. Systems that operate on the entire image at full
resolution are particularly susceptible to clutter and must learn to be invariant to it. One possible
advantage of an attention mechanism is that it may make it easier to learn in the presence of clutter
by focusing on the relevant part of the image and ignoring the irrelevant part. We test this hypothesis
with several experiments on a new task we call Cluttered Translated MNIST. Data for this task was
generated by first placing an MNIST digit in a random location of a larger blank image and then
adding random 8 by 8 subpatches from other random MNIST digits to random locations of the
image. The goal is to classify the complete digit present in the image. Figure 2b shows a random
sample of test cases for the 60 by 60 Cluttered Translated MNIST task.

Table 2a shows the classification results for the models we trained on 60 by 60 Cluttered Translated
MNIST with 4 pieces of clutter. The presence of clutter makes the task much more difficult but the
performance of the attention model is affected less than the performance of the other models. RAM
with 4 glimpses reaches 7.1% error, which outperforms fully-connected models by a wide margin
and the convolutional neural network by 0.7%, and RAM trained with 6 and 8 glimpses achieves
even lower error. Since RAM achieves larger relative error improvements over a convolutional
network in the presence of clutter these results suggest the attention-based models may be better at
dealing with clutter than convolutional networks because they can simply ignore it by not looking at

7

(a) 60x60 Cluttered Translated MNIST
Model Error
FC, 2 layers (64 hiddens each) 28.96%
FC, 2 layers (256 hiddens each) 13.2%
Convolutional, 2 layers 7.83%
RAM, 4 glimpses, 12⇥ 12, 3 scales 7.1%
RAM, 6 glimpses, 12⇥ 12, 3 scales 5.88%
RAM, 8 glimpses, 12⇥ 12, 3 scales 5.23%

(b) 100x100 Cluttered Translated MNIST
Model Error
Convolutional, 2 layers 16.51%
RAM, 4 glimpses, 12⇥ 12, 4 scales 14.95%
RAM, 6 glimpses, 12⇥ 12, 4 scales 11.58%
RAM, 8 glimpses, 12⇥ 12, 4 scales 10.83%

Table 2: Classification on the Cluttered Translated MNIST dataset. FC denotes a fully-connected
network with two layers of rectifier units. The convolutional network had one layer of 8 10 ⇥ 10

filters with stride 5, followed by a fully connected layer with 256 units in the 60 ⇥ 60 case and
86 units in the 100 ⇥ 100 case with rectifiers after each layer. Instances of the attention model are
labeled with the number of glimpses, the size of the retina, and the number of scales in the retina.
All models except for the big fully connected network had roughly the same number of parameters.

Figure 3: Examples of the learned policy on 60 ⇥ 60 cluttered-translated MNIST task. Column 1:
The input image with glimpse path overlaid in green. Columns 2-7: The six glimpses the network
chooses. The center of each image shows the full resolution glimpse, the outer low resolution areas
are obtained by upscaling the low resolution glimpses back to full image size. The glimpse paths
clearly show that the learned policy avoids computation in empty or noisy parts of the input space
and directly explores the area around the object of interest.

attains a significantly lower error rate of 2.3% than the fully connected networks. However, RAM
with 4 glimpses gets roughly the same performance as the convolutional network and outperforms
it for 6 and 8 glimpses, reaching roughly 1.9% error. This is possible because the attention model
can focus its retina on the digit and hence learn a translation invariant policy. This experiment also
shows that the attention model is able to successfully search for an object in a big image when the
object is not centered.

Cluttered Non-Centered Digits: One of the most challenging aspects of classifying real-world
images is the presence of a wide range clutter. Systems that operate on the entire image at full
resolution are particularly susceptible to clutter and must learn to be invariant to it. One possible
advantage of an attention mechanism is that it may make it easier to learn in the presence of clutter
by focusing on the relevant part of the image and ignoring the irrelevant part. We test this hypothesis
with several experiments on a new task we call Cluttered Translated MNIST. Data for this task was
generated by first placing an MNIST digit in a random location of a larger blank image and then
adding random 8 by 8 subpatches from other random MNIST digits to random locations of the
image. The goal is to classify the complete digit present in the image. Figure 2b shows a random
sample of test cases for the 60 by 60 Cluttered Translated MNIST task.

Table 2a shows the classification results for the models we trained on 60 by 60 Cluttered Translated
MNIST with 4 pieces of clutter. The presence of clutter makes the task much more difficult but the
performance of the attention model is affected less than the performance of the other models. RAM
with 4 glimpses reaches 7.1% error, which outperforms fully-connected models by a wide margin
and the convolutional neural network by 0.7%, and RAM trained with 6 and 8 glimpses achieves
even lower error. Since RAM achieves larger relative error improvements over a convolutional
network in the presence of clutter these results suggest the attention-based models may be better at
dealing with clutter than convolutional networks because they can simply ignore it by not looking at

7



M. Malinowski

Multiple Object Recognition with Visual Attention 

42



M. Malinowski

DRAW: A Recurrent Neural Network For Image Generation

3.1. Reading and Writing Without Attention

In the simplest instantiation of DRAW the entire input im-
age is passed to the encoder at every time-step, and the de-
coder modifies the entire canvas matrix at every time-step.
In this case the read and write operations reduce to

read(x, x̂

t

, h

dec
t�1

) = [x, x̂

t

] (17)

write(hdec
t

) = W (h

dec
t

) (18)

However this approach does not allow the encoder to fo-
cus on only part of the input when creating the latent dis-
tribution; nor does it allow the decoder to modify only a
part of the canvas vector. In other words it does not pro-
vide the network with an explicit selective attention mech-
anism, which we believe to be crucial to large scale image
generation. We refer to the above configuration as “DRAW
without attention”.

3.2. Selective Attention Model

To endow the network with selective attention without sac-
rificing the benefits of gradient descent training, we take in-
spiration from the differentiable attention mechanisms re-
cently used in handwriting synthesis (Graves, 2013) and
Neural Turing Machines (Graves et al., 2014). Unlike
the aforementioned works, we consider an explicitly two-
dimensional form of attention, where an array of 2D Gaus-
sian filters is applied to the image, yielding an image
‘patch’ of smoothly varying location and zoom. This con-
figuration, which we refer to simply as “DRAW”, some-
what resembles the affine transformations used in computer
graphics-based autoencoders (Tieleman, 2014).

As illustrated in Fig. 3, the N ⇥N grid of Gaussian filters is
positioned on the image by specifying the co-ordinates of
the grid centre and the stride distance between adjacent fil-
ters. The stride controls the ‘zoom’ of the patch; that is, the
larger the stride, the larger an area of the original image will
be visible in the attention patch, but the lower the effective
resolution of the patch will be. The grid centre (g

X

, g

Y

)

and stride � (both of which are real-valued) determine the
mean location µ
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, µ
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of the filter at row i, column j in the
patch as follows:
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Two more parameters are required to fully specify the at-
tention model: the isotropic variance �

2 of the Gaussian
filters, and a scalar intensity � that multiplies the filter re-
sponse. Given an A ⇥ B input image x, all five attention
parameters are dynamically determined at each time step

�
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Y
{

{
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{

Figure 3. Left: A 3⇥ 3 grid of filters superimposed on an image.
The stride (�) and centre location (gX , gY ) are indicated. Right:
Three N ⇥ N patches extracted from the image (N = 12). The
green rectangles on the left indicate the boundary and precision
(�) of the patches, while the patches themselves are shown to the
right. The top patch has a small � and high �, giving a zoomed-in
but blurry view of the centre of the digit; the middle patch has
large � and low �, effectively downsampling the whole image;
and the bottom patch has high � and �.

via a linear transformation of the decoder output h
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where the variance, stride and intensity are emitted in the
log-scale to ensure positivity. The scaling of g

X

, g

Y

and �

is chosen to ensure that the initial patch (with a randomly
initialised network) roughly covers the whole input image.

Given the attention parameters emitted by the decoder, the
horizontal and vertical filterbank matrices F

X

and F

Y

(di-
mensions N ⇥ A and N ⇥ B respectively) are defined as
follows:
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where (i, j) is a point in the attention patch, (a, b) is a point
in the input image, and Z

x

, Z

y

are normalisation constants
that ensure that
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DRAW - Generative model with visual attention
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Time

Figure 5. Cluttered MNIST classification with attention. Each
sequence shows a succession of four glimpses taken by the net-
work while classifying cluttered translated MNIST. The green
rectangle indicates the size and location of the attention patch,
while the line width represents the variance of the filters.

Table 1. Classification test error on 100 ⇥ 100 Cluttered Trans-
lated MNIST.

Model Error
Convolutional, 2 layers 14.35%
RAM, 4 glimpses, 12 ⇥ 12, 4 scales 9.41%
RAM, 8 glimpses, 12 ⇥ 12, 4 scales 8.11%
Differentiable RAM, 4 glimpses, 12 ⇥ 12 4.18%
Differentiable RAM, 8 glimpses, 12 ⇥ 12 3.36%

time-step, whereas RAM used four, at different zooms.

4.2. MNIST Generation

We trained the full DRAW network as a generative model
on the binarized MNIST dataset (Salakhutdinov & Mur-
ray, 2008). This dataset has been widely studied in the
literature, allowing us to compare the numerical perfor-
mance (measured in average nats per image on the test
set) of DRAW with existing methods. Table 2 shows that
DRAW without selective attention performs comparably to
other recent generative models such as DARN, NADE and
DBMs, and that DRAW with attention considerably im-
proves on the state of the art.

Table 2. Negative log-likelihood (in nats) per test-set example on
the binarised MNIST data set. The right hand column, where
present, gives an upper bound (Eq. 12) on the negative log-
likelihood. The previous results are from [1] (Salakhutdinov &
Hinton, 2009), [2] (Murray & Salakhutdinov, 2009), [3] (Uria
et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende et al., 2014),
[6] (Salimans et al., 2014), [7] (Gregor et al., 2014).

Model � log p 
DBM 2hl [1] ⇡ 84.62

DBN 2hl [2] ⇡ 84.55

NADE [3] 88.33

EoNADE 2hl (128 orderings) [3] 85.10

EoNADE-5 2hl (128 orderings) [4] 84.68

DLGM [5] ⇡ 86.60

DLGM 8 leapfrog steps [6] ⇡ 85.51 88.30

DARN 1hl [7] ⇡ 84.13 88.30

DARN 12hl [7] - 87.72
DRAW without attention - 87.40
DRAW - 80.97

Figure 6. Generated MNIST images. All digits were generated
by DRAW except those in the rightmost column, which shows the
training set images closest to those in the column second to the
right (pixelwise L

2 is the distance measure). Note that the net-
work was trained on binary samples, while the generated images
are mean probabilities.

Once the DRAW network was trained, we generated
MNIST digits following the method in Section 2.3, exam-
ples of which are presented in Fig. 6. Fig. 7 illustrates
the image generation sequence for a DRAW network with-
out selective attention (see Section 3.1). It is interesting to
compare this with the generation sequence for DRAW with
attention, as depicted in Fig. 1. Whereas without attention
it progressively sharpens a blurred image in a global way,

Draw - Continuous transitions  
(smooth pursuit?)

(a) 60x60 Cluttered Translated MNIST
Model Error
FC, 2 layers (64 hiddens each) 28.96%
FC, 2 layers (256 hiddens each) 13.2%
Convolutional, 2 layers 7.83%
RAM, 4 glimpses, 12⇥ 12, 3 scales 7.1%
RAM, 6 glimpses, 12⇥ 12, 3 scales 5.88%
RAM, 8 glimpses, 12⇥ 12, 3 scales 5.23%
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RAM, 4 glimpses, 12⇥ 12, 4 scales 14.95%
RAM, 6 glimpses, 12⇥ 12, 4 scales 11.58%
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Table 2: Classification on the Cluttered Translated MNIST dataset. FC denotes a fully-connected
network with two layers of rectifier units. The convolutional network had one layer of 8 10 ⇥ 10

filters with stride 5, followed by a fully connected layer with 256 units in the 60 ⇥ 60 case and
86 units in the 100 ⇥ 100 case with rectifiers after each layer. Instances of the attention model are
labeled with the number of glimpses, the size of the retina, and the number of scales in the retina.
All models except for the big fully connected network had roughly the same number of parameters.

Figure 3: Examples of the learned policy on 60 ⇥ 60 cluttered-translated MNIST task. Column 1:
The input image with glimpse path overlaid in green. Columns 2-7: The six glimpses the network
chooses. The center of each image shows the full resolution glimpse, the outer low resolution areas
are obtained by upscaling the low resolution glimpses back to full image size. The glimpse paths
clearly show that the learned policy avoids computation in empty or noisy parts of the input space
and directly explores the area around the object of interest.

attains a significantly lower error rate of 2.3% than the fully connected networks. However, RAM
with 4 glimpses gets roughly the same performance as the convolutional network and outperforms
it for 6 and 8 glimpses, reaching roughly 1.9% error. This is possible because the attention model
can focus its retina on the digit and hence learn a translation invariant policy. This experiment also
shows that the attention model is able to successfully search for an object in a big image when the
object is not centered.

Cluttered Non-Centered Digits: One of the most challenging aspects of classifying real-world
images is the presence of a wide range clutter. Systems that operate on the entire image at full
resolution are particularly susceptible to clutter and must learn to be invariant to it. One possible
advantage of an attention mechanism is that it may make it easier to learn in the presence of clutter
by focusing on the relevant part of the image and ignoring the irrelevant part. We test this hypothesis
with several experiments on a new task we call Cluttered Translated MNIST. Data for this task was
generated by first placing an MNIST digit in a random location of a larger blank image and then
adding random 8 by 8 subpatches from other random MNIST digits to random locations of the
image. The goal is to classify the complete digit present in the image. Figure 2b shows a random
sample of test cases for the 60 by 60 Cluttered Translated MNIST task.

Table 2a shows the classification results for the models we trained on 60 by 60 Cluttered Translated
MNIST with 4 pieces of clutter. The presence of clutter makes the task much more difficult but the
performance of the attention model is affected less than the performance of the other models. RAM
with 4 glimpses reaches 7.1% error, which outperforms fully-connected models by a wide margin
and the convolutional neural network by 0.7%, and RAM trained with 6 and 8 glimpses achieves
even lower error. Since RAM achieves larger relative error improvements over a convolutional
network in the presence of clutter these results suggest the attention-based models may be better at
dealing with clutter than convolutional networks because they can simply ignore it by not looking at
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Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along

Attend to parts of the image

(a) 60x60 Cluttered Translated MNIST
Model Error
FC, 2 layers (64 hiddens each) 28.96%
FC, 2 layers (256 hiddens each) 13.2%
Convolutional, 2 layers 7.83%
RAM, 4 glimpses, 12⇥ 12, 3 scales 7.1%
RAM, 6 glimpses, 12⇥ 12, 3 scales 5.88%
RAM, 8 glimpses, 12⇥ 12, 3 scales 5.23%

(b) 100x100 Cluttered Translated MNIST
Model Error
Convolutional, 2 layers 16.51%
RAM, 4 glimpses, 12⇥ 12, 4 scales 14.95%
RAM, 6 glimpses, 12⇥ 12, 4 scales 11.58%
RAM, 8 glimpses, 12⇥ 12, 4 scales 10.83%

Table 2: Classification on the Cluttered Translated MNIST dataset. FC denotes a fully-connected
network with two layers of rectifier units. The convolutional network had one layer of 8 10 ⇥ 10

filters with stride 5, followed by a fully connected layer with 256 units in the 60 ⇥ 60 case and
86 units in the 100 ⇥ 100 case with rectifiers after each layer. Instances of the attention model are
labeled with the number of glimpses, the size of the retina, and the number of scales in the retina.
All models except for the big fully connected network had roughly the same number of parameters.

Figure 3: Examples of the learned policy on 60 ⇥ 60 cluttered-translated MNIST task. Column 1:
The input image with glimpse path overlaid in green. Columns 2-7: The six glimpses the network
chooses. The center of each image shows the full resolution glimpse, the outer low resolution areas
are obtained by upscaling the low resolution glimpses back to full image size. The glimpse paths
clearly show that the learned policy avoids computation in empty or noisy parts of the input space
and directly explores the area around the object of interest.

attains a significantly lower error rate of 2.3% than the fully connected networks. However, RAM
with 4 glimpses gets roughly the same performance as the convolutional network and outperforms
it for 6 and 8 glimpses, reaching roughly 1.9% error. This is possible because the attention model
can focus its retina on the digit and hence learn a translation invariant policy. This experiment also
shows that the attention model is able to successfully search for an object in a big image when the
object is not centered.

Cluttered Non-Centered Digits: One of the most challenging aspects of classifying real-world
images is the presence of a wide range clutter. Systems that operate on the entire image at full
resolution are particularly susceptible to clutter and must learn to be invariant to it. One possible
advantage of an attention mechanism is that it may make it easier to learn in the presence of clutter
by focusing on the relevant part of the image and ignoring the irrelevant part. We test this hypothesis
with several experiments on a new task we call Cluttered Translated MNIST. Data for this task was
generated by first placing an MNIST digit in a random location of a larger blank image and then
adding random 8 by 8 subpatches from other random MNIST digits to random locations of the
image. The goal is to classify the complete digit present in the image. Figure 2b shows a random
sample of test cases for the 60 by 60 Cluttered Translated MNIST task.

Table 2a shows the classification results for the models we trained on 60 by 60 Cluttered Translated
MNIST with 4 pieces of clutter. The presence of clutter makes the task much more difficult but the
performance of the attention model is affected less than the performance of the other models. RAM
with 4 glimpses reaches 7.1% error, which outperforms fully-connected models by a wide margin
and the convolutional neural network by 0.7%, and RAM trained with 6 and 8 glimpses achieves
even lower error. Since RAM achieves larger relative error improvements over a convolutional
network in the presence of clutter these results suggest the attention-based models may be better at
dealing with clutter than convolutional networks because they can simply ignore it by not looking at
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