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Abstract view on the semantic parser!

Grounding and question-answering based on real-world images

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the
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Abstract

A central challenge in semantic parsing is
handling the myriad ways in which knowl-
edge base predicates can be expressed.
Traditionally, semantic parsers are trained
primarily from text paired with knowledge
base information. Our goal is to exploit
the much larger amounts of raw text not
tied to any knowledge base. In this pa-
per, we turn semantic parsing on its head.
Given an input utterance, we first use a
simple method to deterministically gener-
ate a set of candidate logical forms with
a canonical realization in natural language
for each. Then, we use a paraphrase model
to choose the realization that best para-
phrases the input, and output the corre-
sponding logical form. We present two
simple paraphrase models, an association
model and a vector space model, and train
them jointly from question-answer pairs.
Our system PARASEMPRE improves state-
of-the-art accuracies on two recently re-
leased question-answering datasets.

1 Introduction

We consider the semantic parsing problem of map-
ping natural language utterances into logical forms
to be executed on a knowledge base (KB) (Zelle
and Mooney, 1996; Zettlemoyer and Collins,
2005; Wong and Mooney, 2007; Kwiatkowski
et al., 2010). Scaling semantic parsers to large
knowledge bases has attracted substantial atten-
tion recently (Cai and Yates, 2013; Berant et al.,
2013; Kwiatkowski et al., 2013), since it drives
applications such as question answering (QA) and
information extraction (IE).

Semantic parsers need to somehow associate
natural language phrases with logical predicates,
e.g., they must learn that the constructions “What

What party did Clay establish?

paraphrase model

What political party founded by Henry Clay?
...

What event involved the people Henry Clay?

Type.PoliticalParty u Founder.HenryClay ... Type.Event u Involved.HenryClay

Whig Party

Figure 1: Semantic parsing via paraphrasing: For each
candidate logical form (in red), we generate canonical utter-
ances (in purple). The model is trained to paraphrase the in-
put utterance (in green) into the canonical utterances associ-
ated with the correct denotation (in blue).

does X do for a living?”, “What is X’s profes-
sion?”, and “Who is X?”, should all map to the
logical predicate Profession. To learn these map-
pings, traditional semantic parsers use data which
pairs natural language with the KB. However, this
leaves untapped a vast amount of text not related
to the KB. For instance, the utterances “Where is
ACL in 2014?” and “What is the location of ACL
2014?” cannot be used in traditional semantic
parsing methods, since the KB does not contain
an entity ACL2014, but this pair clearly contains
valuable linguistic information. As another refer-
ence point, out of 500,000 relations extracted by
the ReVerb Open IE system (Fader et al., 2011),
only about 10,000 can be aligned to Freebase (Be-
rant et al., 2013).

In this paper, we present a novel approach for
semantic parsing based on paraphrasing that can
exploit large amounts of text not covered by the
KB (Figure 1). Our approach targets factoid ques-
tions with a modest amount of compositionality.
Given an input utterance, we first use a simple de-
terministic procedure to construct a manageable
set of candidate logical forms (ideally, we would
generate canonical utterances for all possible logi-
cal forms, but this is intractable). Next, we heuris-
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• Transform the textual input into a logical representation 
• The logical representation can be executed to return the 

answer from the database 
• Three major components of the semantic parser 
‣ Over-approximate the meaning (set of logical forms) 

‣ Learning-based approach to strive away from bad derivations 

‣ Compositionality principle to learn ‘more from less’

What are the objects that surround the sofa?

answer(X, ( object(X), close(X,Y), sofa(Y) )).
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Freebase knowledge graph

BarackObama

Person

Type

Politician

Profession

1961.08.04

DateOfBirth

HonoluluPlaceOfBirth

Hawaii

ContainedBy

City

Type

UnitedStates

ContainedBy

USState

Type

Event8

Marriage

MichelleObama

Spouse

Type

Female
Gender

1992.10.03

StartDate

Event3
PlacesLived

Chicago

Location

Event21

PlacesLived

Location

ContainedBy

41M entities (nodes)

19K properties (edge labels)

596M assertions (edges)
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Bridging 2: event modifiers

Marriage.Spouse.Madonna Marriage.StartDate

Madonna Marriage.Spouse 2000

Who did Madonna marry in 2000

alignment alignment

joinjoin

bridging

Marriage.(Spouse.Madonna u StartDate.2000)

features

br-popularity:7.11

br-inject : 1

br-startdate : 1

20

# Form 1 Form 2 Bridging
1 Type.FormOfGovernment Chile Type.FormOfGovernmentu GovernmentTypeOf.Chile
2 X-Men ComicBookCoverPriceOf.X-Men
3 Marriage.Spouse.TomCruise 2006 Marriage.(Spouse.TomCruise u StartDate.2006)

Table 2: Three examples of the bridging operation. The bridging binary predicate b is in boldface.

constructs a logical form p

1

.(p

2

.z

0 u b.z) for each
logical predicate b with type (t

1

, t).
In each of the three examples, bridging gener-

ates a binary predicate based on neighboring logi-
cal predicates rather than on explicit lexical material.
In a way, our bridging operation shares with bridg-
ing anaphora (Clark, 1975) the idea of establishing
a novel relation between distinct parts of a sentence.
Naturally, we need features to distinguish between
the generated predicates, or decide whether bridging
is even appropriate at all. Given a binary b, features
include the log of the predicate count log |F(b)|, in-
dicators for the kind of bridging, an indicator on the
binary b for injections (Table 1). In addition, we add
all text similarity features by comparing the Free-
base name of b with content words in the question.

3.3 Composition

So far, we have mainly focused on the generation of
predicates. We now discuss three classes of features
pertaining to their composition.

Rule features Each derivation d is the result of ap-
plying some number of intersection, join, and bridg-
ing operations. To control this number, we define
indicator features on each of these counts. This is in
contrast to the norm of having a single feature whose
value is equal to the count, which can only repre-
sent one-sided preferences for having more or fewer
of a given operation. Indicator features stabilize the
model, preferring derivations with a well-balanced
inventory of operations.

Part-of-speech tag features To guide the compo-
sition of predicates, we use POS tags in two ways.
First, we introduce features indicating when a word
of a given POS tag is skipped, which could capture
the fact that skipping auxiliaries is generally accept-
able, while skipping proper nouns is not. Second,
we introduce features on the POS tags involved in a
composition, inspired by dependency parsing (Mc-
Donald et al., 2005). Specifically, when we combine

logical forms z

1

and z

2

via a join or bridging, we
include a feature on the POS tag of (the first word
spanned by) z

1

conjoined with the POS tag corre-
sponding to z

2

. Rather than using head-modifier in-
formation from dependency trees (Branavan et al.,
2012; Krishnamurthy and Mitchell, 2012; Cai and
Yates, 2013; Poon, 2013), we can learn the appro-
priate relationships tailored for downstream accu-
racy. For example, the phrase “located” is aligned
to the predicate ContainedBy. POS features can de-
tect that if “located” precedes a noun phrase (“What
is located in Beijing?”), then the noun phrase is the
object of the predicate, and if it follows the noun
phrase (“Where is Beijing located?”), then it is in
subject position.

Note that our three operations (intersection, join,
and bridging) are quite permissive, and we rely on
features, which encode soft, overlapping rules. In
contrast, CCG-based methods (Kwiatkowski et al.,
2010; Kwiatkowski et al., 2011) encode the com-
bination preferences structurally in non-overlapping
rules; these could be emulated with features with
weights clamped to �1.

Denotation features While it is clear that learning
from denotations rather than logical forms is a draw-
back since it provides less information, it is less ob-
vious that working with denotations actually gives
us additional information. Specifically, we include
four features indicating whether the denotation of
the predicted logical form has size 0, 1, 2, or at least
3. This feature encodes presupposition constraints
in a soft way: when people ask a question, usually
there is an answer and it is often unique. This allows
us to favor logical forms with this property.

4 Experiments

We now evaluate our semantic parser empirically.
In Section 4.1, we compare our approach to Cai
and Yates (2013) on their recently released dataset
(henceforth, FREE917) and present results on a new

where p2 ∈ (t1, ∗), z ∈ t, b ∈ (t1, t)

Category Description
Alignment Log of # entity pairs that occur with the

phrase r1 (|F(r1)|)
Log of # entity pairs that occur with the
logical predicate r2 (|F(r2)|)
Log of # entity pairs that occur with both
r1 and r2 (|F(r1) \ F(r2)|)
Whether r2 is the best match for r1 (r2 =

argmax

r

|F(r1) \ F(r)|)
Lexicalized Conjunction of phrase w and predicate z

Text similarity Phrase r1 is equal/prefix/suffix of s2
Phrase overlap of r1 and s2

Bridging Log of # entity pairs that occur with bridg-
ing predicate b (|F(b)|)
Kind of bridging (# unaries involved)
The binary b injected

Composition # of intersect/join/bridging operations
POS tags in join/bridging and skipped
words
Size of denotation of logical form

Table 1: Full set of features. For the alignment and text sim-
ilarity, r1 is a phrase, r2 is a predicate with Freebase name s2,
and b is a binary predicate with type signature (t1, t2).

bipartite graph with left nodes R
1

and right nodes
R

2

(Figure 3). We add an edge (r

1

, r

2

) if (i) the
type signatures of r

1

and r

2

match7 and (ii) their ex-
tensions have non-empty overlap (F(r

1

)\F(r

2

) 6=
;). Our final graph contains 109K edges for binary
predicates and 294K edges for unary predicates.

Naturally, non-zero overlap by no means guaran-
tees that r

1

should map to r

2

. In our noisy data,
even “born in” and Marriage.EndDate co-occur 4
times. Rather than thresholding based on some cri-
terion, we compute a set of features, which are used
by the model downstream in conjunction with other
sources of information.

We compute three types of features (Table 1).
Alignment features are unlexicalized and measure
association based on argument overlap. Lexicalized
features are standard conjunctions of the phrase w

and the logical form z. Text similarity features com-
pare the (untyped) phrase (e.g., “born”) to the Free-
base name of the logical predicate (e.g., “People
born here”): Given the phrase r

1

and the Freebase
name s

2

of the predicate r

2

, we compute string sim-
ilarity features such as whether r

1

and s

2

are equal,

7Each Freebase property has a designated type signa-
ture, which can be extended to composite predicates, e.g.,
sig(Marriage.StartDate) = (Person,Date).

as well as some other measures of token overlap.

3.2 Bridging
While alignment can cover many predicates, it is un-
reliable for cases where the predicates are expressed
weakly or implicitly. For example, in “What govern-
ment does Chile have?”, the predicate is expressed
by the light verb have, in “What actors are in Top
Gun?”, it is expressed by a highly ambiguous prepo-
sition, and in “What is Italy money?” [sic], it is
omitted altogether. Since natural language doesn’t
offer much help here, let us turn elsewhere for guid-
ance. Recall that at this point our main goal is to
generate a manageable set of candidate logical forms
to be scored by the log-linear model.

In the first example, suppose the phrases “Chile”
and “government” are parsed as Chile and
Type.FormOfGovernment, respectively, and we hy-
pothesize a connecting binary. The two predicates
impose strong type constraints on that binary, so we
can afford to generate all the binary predicates that
type check (see Table 2). More formally, given two
unaries z

1

and z

2

with types t
1

and t

2

, we generate a
logical form z

1

u b.z

2

for each binary b whose type
signature is (t

1

, t

2

). Figure 1 visualizes bridging of
the unaries Type.University and Obama.

Now consider the example “What is the
cover price of X-men?” Here, the binary
ComicBookCoverPrice is expressed explicitly, but
is not in our lexicon since the language use is rare.
To handle this, we allow bridging to generate a bi-
nary based on a single unary; in this case, based on
the unary X-Men (Table 2), we generate several bina-
ries including ComicBookCoverPrice. Generically,
given a unary z with type t, we construct a logical
form b.z for any predicate b with type (⇤, t).

Finally, consider the question “Who did
Tom Cruise marry in 2006?”. Suppose we
parse the phrase “Tom Cruise marry” into
Marriage.Spouse.TomCruise, or more explicitly,
�x.9e.Marriage(x, e) ^ Spouse(e, TomCruise).
Here, the neo-Davidsonian event variable e is an
intermediate quantity, but needs to be further mod-
ified (in this case, by the temporal modifier 2006).
To handle this, we apply bridging to a unary and the
intermediate event (see Table 2). Generically, given
a logical form p

1

.p

2

.z

0 where p

2

has type (t

1

, ⇤),
and a unary z with type t, bridging injects z and

where z1 ∈ t1, z2 ∈ t2, b ∈ (t1, t2)

Bridging 1: two unaries

Type.University

Education.Institution

BarackObama

Which college did Obama go to ?

alignment

alignment

bridging

Type.University u Education.Institution.BarackObama

19

J. Berant et. al. “Semantic Parsing on Freebase from Question Answer pairs” EMNLP 2013
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One derivation

Type.CityuPeopleBornHere.BarackObama

what Type.CityTown

city

was PeopleBornHere.BarackObama

BarackObama

Obama

PeopleBornHere

born

?

Alignment

Alignment Alignment

join

intersect

Derivations are constructed using an over-general grammar

22

Freebase knowledge graph

BarackObama

Person

Type

Politician

Profession

1961.08.04

DateOfBirth

HonoluluPlaceOfBirth

Hawaii

ContainedBy

City

Type

UnitedStates

ContainedBy

USState

Type

Event8

Marriage

MichelleObama

Spouse

Type

Female
Gender

1992.10.03

StartDate

Event3
PlacesLived

Chicago

Location

Event21

PlacesLived

Location

ContainedBy

41M entities (nodes)

19K properties (edge labels)

596M assertions (edges)
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J. Berant et. al. “Semantic Parsing on Freebase from Question Answer pairs” EMNLP 2013
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Program 
induction

[(syntax_i, semantics_i)]_i
Learning

Logical forms

Denotations

SemanticsGrammar

Productions Lexicon

max
w2Rd

Y

(x,d)2D

X

y

02GEN(x)

p(d | Jy0K) p(y0 | x ; w)

2

where GEN(x) ⊆ Y

max
w2Rd

Y

(x,d)2D

X

y

02GEN(x)

p(d | Jy0K) p(y0 | x ; w)

max
w2Rd

Y

(x,y)2D

X

y

02GEN(x)

p(y | y0) p(y0 | x ; w)

2

max
w2Rd

Y

(x,d)2D

X

y

02GEN(x)

p(d | Jy0K) p(y0 | x ; w)

max
w2Rd

Y

(x,y)2D

X

y

02GEN(x)

p(y | y0) p(y0 | x ; w)

p(y0 | x ; w) =
exp{�(y0, x)T ✓}P

y2GEN(x) exp{�(y, x)T ✓}

2

and

Database
Ontology

Prolog!Sql!SparQL!
max
w2Rd

Y

(x,d)2D

X

y

02GEN(x)

p(d | Jy0K) p(y0 | x ; w)

max
w2Rd

Y

(x,d)2D

X

z2Z

x

X

c2C

z

p(d | JzK) p(c, z | x ; w)

max
w2Rd

Y

(x,y)2D

X

y

02GEN(x)

p(y | y0) p(y0 | x ; w)

p(y0 | x ; w) =
exp{�(y0, x)T ✓}P

y2GEN(x) exp{�(y, x)T ✓}

max
w2Rd

Y

(x,d)2D

p(d | x ; w)

2

max
w2Rd

Y

(x,d)2D

X

y

02GEN(x)

p(d | Jy0K) p(y0 | x ; w)

max
w2Rd

Y

(x,d)2D

X

z2Z

x

X

c2C

z

p(d | JzK) p(c, z | x ; w)

max
w2Rd

Y

(x,y)2D

X

y

02GEN(x)

p(y | y0) p(y0 | x ; w)

p(y0 | x ; w) =
exp{�(y0, x)T ✓}P

y2GEN(x) exp{�(y, x)T ✓}

max
w2Rd

Y

(x,d)2D

p(d | x ; w)

2



M. Malinowski | NLP Reading Group

From grammar to program induction

7

Program 
induction

Syntax Semantic representation Denotation

N ! one 1 1
N ! two 2 2

...
...

...
R ! plus + the R such that R(x, y) = x+ y

R ! minus � the R such that R(x, y) = x� y

R ! times ⇥ the R such that R(x, y) = x ⇤ y

S ! minus ¬ the f such that f(x) = �x

N ! S N pSqpNq JpSqK(JpNqK)
N ! N

L

R N
R

(pRq pN
L

q pN
R

q) JpRqK(JpN
L

qK, JpN
R

qK)

Table 1: An illustrative grammar. puq is the translation of syntactic expression
u, and JsK is the denotation of semantic representation s. N is the CFG’s start
symbol. In the final rule, the L and R subscripts are meta-annotations to ensure
deterministic translation and interpretation.

Utterance Semantic representation Denotation

A. seven minus five (� 7 5) 2
B. minus three plus one (+ ¬3 1) �2
C. two minus two times two (⇥ (� 2 2) 2) 0
D. two plus three plus four (+ 2 (+ 3 4)) 9

Table 2: Examples derived from the grammar in table 1.

2.1 Utterances

We model each utterance as a sequence of strings (words). These can be thought
of as derived from the output of the context-free grammar (CFG) given in the
left column of table 1. This unstructured starting point helps keep the focus
on semantics. However, relatively little hinges on this choice; for example,
while using syntactic trees, dependency graphs, or shallow parses would a↵ect
the precise mapping to semantic representations and on to denotations, the
substantive connections with the models we discuss below would remain the
same.

2.2 Semantic representations

In linguistics, semantic representations are generally logical forms: expressions
in a fully specified, unambiguous artificial language. The grammar in table 1
adopts such a view, defining semantic representations with a logical language
that has constant symbols for numbers and relations and uses juxtaposition and
bracketing to create complex expressions. In the literature, one encounters a
variety of di↵erent formalisms — for example, lambda calculi (Carpenter 1997)

3

grammar

N -> B N : forward    !
N -> U N : forward     
B -> N R : backward 

Productions and semantic application

[(syntax_i, semantics_i)]_i

Mental construct

Implementation

Syntax Semantic representation Denotation

N ! one 1 1
N ! two 2 2

...
...

...
R ! plus + the R such that R(x, y) = x+ y

R ! minus � the R such that R(x, y) = x� y

R ! times ⇥ the R such that R(x, y) = x ⇤ y

S ! minus ¬ the f such that f(x) = �x

N ! S N pSqpNq JpSqK(JpNqK)
N ! N

L

R N
R

(pRq pN
L

q pN
R

q) JpRqK(JpN
L

qK, JpN
R

qK)

Table 1: An illustrative grammar. puq is the translation of syntactic expression
u, and JsK is the denotation of semantic representation s. N is the CFG’s start
symbol. In the final rule, the L and R subscripts are meta-annotations to ensure
deterministic translation and interpretation.

Utterance Semantic representation Denotation

A. seven minus five (� 7 5) 2
B. minus three plus one (+ ¬3 1) �2
C. two minus two times two (⇥ (� 2 2) 2) 0
D. two plus three plus four (+ 2 (+ 3 4)) 9

Table 2: Examples derived from the grammar in table 1.

2.1 Utterances

We model each utterance as a sequence of strings (words). These can be thought
of as derived from the output of the context-free grammar (CFG) given in the
left column of table 1. This unstructured starting point helps keep the focus
on semantics. However, relatively little hinges on this choice; for example,
while using syntactic trees, dependency graphs, or shallow parses would a↵ect
the precise mapping to semantic representations and on to denotations, the
substantive connections with the models we discuss below would remain the
same.

2.2 Semantic representations

In linguistics, semantic representations are generally logical forms: expressions
in a fully specified, unambiguous artificial language. The grammar in table 1
adopts such a view, defining semantic representations with a logical language
that has constant symbols for numbers and relations and uses juxtaposition and
bracketing to create complex expressions. In the literature, one encounters a
variety of di↵erent formalisms — for example, lambda calculi (Carpenter 1997)

3

semantics

Also semantic 
combinators,  
such as 
backward, 
forward 
application lexicon: words -> (syntax, semantics)

Lexicon can be strong or crude

one:     [(N,1)]!
two:     [(N,2)]!
plus:    [(R,+)]!
minus: [(R,-), (U, ~)]

one :   [(N,1), (N,2), …]!
plus:    [(R,+), (R,-), (U,!)]!
minus: [(R,-), (U, ~)]

B!" #$( N!" #$)
U!" #$( N!" #$)
R!" #$( N!" #$)
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Grounding and question-answering based on real-world images

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the
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Abstract

A central challenge in semantic parsing is
handling the myriad ways in which knowl-
edge base predicates can be expressed.
Traditionally, semantic parsers are trained
primarily from text paired with knowledge
base information. Our goal is to exploit
the much larger amounts of raw text not
tied to any knowledge base. In this pa-
per, we turn semantic parsing on its head.
Given an input utterance, we first use a
simple method to deterministically gener-
ate a set of candidate logical forms with
a canonical realization in natural language
for each. Then, we use a paraphrase model
to choose the realization that best para-
phrases the input, and output the corre-
sponding logical form. We present two
simple paraphrase models, an association
model and a vector space model, and train
them jointly from question-answer pairs.
Our system PARASEMPRE improves state-
of-the-art accuracies on two recently re-
leased question-answering datasets.

1 Introduction

We consider the semantic parsing problem of map-
ping natural language utterances into logical forms
to be executed on a knowledge base (KB) (Zelle
and Mooney, 1996; Zettlemoyer and Collins,
2005; Wong and Mooney, 2007; Kwiatkowski
et al., 2010). Scaling semantic parsers to large
knowledge bases has attracted substantial atten-
tion recently (Cai and Yates, 2013; Berant et al.,
2013; Kwiatkowski et al., 2013), since it drives
applications such as question answering (QA) and
information extraction (IE).

Semantic parsers need to somehow associate
natural language phrases with logical predicates,
e.g., they must learn that the constructions “What

What party did Clay establish?

paraphrase model

What political party founded by Henry Clay?
...

What event involved the people Henry Clay?

Type.PoliticalParty u Founder.HenryClay ... Type.Event u Involved.HenryClay

Whig Party

Figure 1: Semantic parsing via paraphrasing: For each
candidate logical form (in red), we generate canonical utter-
ances (in purple). The model is trained to paraphrase the in-
put utterance (in green) into the canonical utterances associ-
ated with the correct denotation (in blue).

does X do for a living?”, “What is X’s profes-
sion?”, and “Who is X?”, should all map to the
logical predicate Profession. To learn these map-
pings, traditional semantic parsers use data which
pairs natural language with the KB. However, this
leaves untapped a vast amount of text not related
to the KB. For instance, the utterances “Where is
ACL in 2014?” and “What is the location of ACL
2014?” cannot be used in traditional semantic
parsing methods, since the KB does not contain
an entity ACL2014, but this pair clearly contains
valuable linguistic information. As another refer-
ence point, out of 500,000 relations extracted by
the ReVerb Open IE system (Fader et al., 2011),
only about 10,000 can be aligned to Freebase (Be-
rant et al., 2013).

In this paper, we present a novel approach for
semantic parsing based on paraphrasing that can
exploit large amounts of text not covered by the
KB (Figure 1). Our approach targets factoid ques-
tions with a modest amount of compositionality.
Given an input utterance, we first use a simple de-
terministic procedure to construct a manageable
set of candidate logical forms (ideally, we would
generate canonical utterances for all possible logi-
cal forms, but this is intractable). Next, we heuris-
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Challenges
• “Myriads ways in which knowledge base predicates can be 

expressed” [1] 
‣ “What does X do for a living?” 

‣ “What is X’s profession”? 

• Ontological mismatch problem 
‣ “The choice of ontology significantly impacts learning” [2] 

‣ Example:  

!

!

• Missing coverage 
‣ “out of 500,000 relations extracted by the ReVerb Open IE system 

… only about 10,000 can be aligned to Freebase” [1]
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Abstract

We consider the challenge of learning seman-
tic parsers that scale to large, open-domain
problems, such as question answering with
Freebase. In such settings, the sentences cover
a wide variety of topics and include many
phrases whose meaning is difficult to rep-
resent in a fixed target ontology. For ex-
ample, even simple phrases such as ‘daugh-
ter’ and ‘number of people living in’ can-
not be directly represented in Freebase, whose
ontology instead encodes facts about gen-
der, parenthood, and population. In this pa-
per, we introduce a new semantic parsing ap-
proach that learns to resolve such ontologi-
cal mismatches. The parser is learned from
question-answer pairs, uses a probabilistic
CCG to build linguistically motivated logical-
form meaning representations, and includes
an ontology matching model that adapts the
output logical forms for each target ontology.
Experiments demonstrate state-of-the-art per-
formance on two benchmark semantic parsing
datasets, including a nine point accuracy im-
provement on a recent Freebase QA corpus.

1 Introduction

Semantic parsers map sentences to formal represen-
tations of their underlying meaning. Recently, al-
gorithms have been developed to learn such parsers
for many applications, including question answering
(QA) (Kwiatkowski et al., 2011; Liang et al., 2011),
relation extraction (Krishnamurthy and Mitchell,
2012), robot control (Matuszek et al., 2012; Kr-
ishnamurthy and Kollar, 2013), interpreting instruc-

tions (Chen and Mooney, 2011; Artzi and Zettle-
moyer, 2013b), and generating programs (Kushman
and Barzilay, 2013).

In each case, the parser uses a predefined set
of logical constants, or an ontology, to construct
meaning representations. In practice, the choice
of ontology significantly impacts learning. For
example, consider the following questions (Q) and
candidate meaning representations (MR):

Q1: What is the population of Seattle?
Q2: How many people live in Seattle?

MR1: �x.population(Seattle, x)
MR2: count(�x.person(x) ^ live(x, Seattle))

A semantic parser might aim to construct MR1 for
Q1 and MR2 for Q2; these pairings align constants
(count, person, etc.) directly to phrases (‘How
many,’ ‘people,’ etc.). Unfortunately, few ontologies
have sufficient coverage to support both meaning
representations, for example many QA databases
would only include the population relation required
for MR1. Most existing approaches would, given
this deficiency, simply aim to produce MR1 for Q2,
thereby introducing significant lexical ambiguity
that complicates learning. Such ontological mis-
matches become increasingly common as domain
and language complexity increases.

In this paper, we introduce a semantic parsing ap-
proach that supports scalable, open-domain ontolog-
ical reasoning. The parser first constructs a linguis-
tically motivated domain-independent meaning rep-
resentation. For example, possibly producing MR1
for Q1 and MR2 for Q2 above. It then uses a learned
ontology matching model to transform this represen-

http://cs.stanford.edu/~pliang/papers/paraphrasing-acl2014.pdf
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utterance

underspecified

logical

form

canonical

utterance

logical

form

ontology

matching

paraphrase

direct

(traditional)

(Kwiatkowski et al. 2013)

(this work)

Figure 2: The main challenge in semantic parsing is cop-
ing with the mismatch between language and the KB. (a)
Traditionally, semantic parsing maps utterances directly to
logical forms. (b) Kwiatkowski et al. (2013) map the utter-
ance to an underspecified logical form, and perform ontology
matching to handle the mismatch. (c) We approach the prob-
lem in the other direction, generating canonical utterances for
logical forms, and use paraphrase models to handle the mis-
match.

tically generate canonical utterances for each log-
ical form based on the text descriptions of predi-
cates from the KB. Finally, we choose the canoni-
cal utterance that best paraphrases the input utter-
ance, and thereby the logical form that generated
it. We use two complementary paraphrase mod-
els: an association model based on aligned phrase
pairs extracted from a monolingual parallel cor-
pus, and a vector space model, which represents
each utterance as a vector and learns a similarity
score between them. The entire system is trained
jointly from question-answer pairs only.

Our work relates to recent lines of research
in semantic parsing and question answering.
Kwiatkowski et al. (2013) first maps utterances to
a domain-independent intermediate logical form,
and then performs ontology matching to produce
the final logical form. In some sense, we ap-
proach the problem from the opposite end, using
an intermediate utterance, which allows us to em-
ploy paraphrasing methods (Figure 2). Fader et
al. (2013) presented a QA system that maps ques-
tions onto simple queries against Open IE extrac-
tions, by learning paraphrases from a large mono-
lingual parallel corpus, and performing a single
paraphrasing step. We adopt the idea of using
paraphrasing for QA, but suggest a more general
paraphrase model and work against a formal KB
(Freebase).

We apply our semantic parser on two datasets:
WEBQUESTIONS (Berant et al., 2013), which
contains 5,810 question-answer pairs with
common questions asked by web users; and

FREE917 (Cai and Yates, 2013), which has
917 questions manually authored by annota-
tors. On WEBQUESTIONS, we obtain a relative
improvement of 12% in accuracy over the
state-of-the-art, and on FREE917 we match the
current best performing system. The source
code of our system PARASEMPRE is released
at http://www-nlp.stanford.edu/
software/sempre/.

2 Setup

Our task is as follows: Given (i) a knowledge
base K, and (ii) a training set of question-answer
pairs {(x

i

, y

i

)}n
i=1, output a semantic parser that

maps new questions x to answers y via latent log-
ical forms z. Let E denote a set of entities (e.g.,
BillGates), and let P denote a set of properties
(e.g., PlaceOfBirth). A knowledge base K is a
set of assertions (e1, p, e2) 2 E ⇥ P ⇥ E (e.g.,
(BillGates, PlaceOfBirth, Seattle)). We use
the Freebase KB (Google, 2013), which has 41M
entities, 19K properties, and 596M assertions.

To query the KB, we use a logical language
called simple �-DCS. In simple �-DCS, an
entity (e.g., Seattle) is a unary predicate
(i.e., a subset of E) denoting a singleton set
containing that entity. A property (which is a
binary predicate) can be joined with a unary
predicate; e.g., Founded.Microsoft denotes
the entities that are Microsoft founders. In
PlaceOfBirth.Seattle u Founded.Microsoft,
an intersection operator allows us to denote
the set of Seattle-born Microsoft founders.
A reverse operator reverses the order of ar-
guments: R[PlaceOfBirth].BillGates

denotes Bill Gates’s birthplace (in con-
trast to PlaceOfBirth.Seattle). Lastly,
count(Founded.Microsoft) denotes set cardinal-
ity, in this case, the number of Microsoft founders.
The denotation of a logical form z with respect to
a KB K is given by JzKK. For a formal description
of simple �-DCS, see Liang (2013) and Berant et
al. (2013).

3 Model overview

We now present the general framework for seman-
tic parsing via paraphrasing, including the model
and the learning algorithm. In Sections 4 and 5,
we provide the details of our implementation.

Canonical utterance construction Given an ut-
terance x and the KB, we construct a set of candi-

Handling mismatch via paraphrase model

Association Vector space
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Utterance

date logical forms Z
x

, and then for each z 2 Z
x

generate a small set of canonical natural language
utterances C

z

. Our goal at this point is only to gen-
erate a manageable set of logical forms containing
the correct one, and then generate an appropriate
canonical utterance from it. This strategy is feasi-
ble in factoid QA where compositionality is low,
and so the size of Z

x

is limited (Section 4).

Paraphrasing We score the canonical utter-
ances in C

z

with respect to the input utterance x

using a paraphrase model, which offers two ad-
vantages. First, the paraphrase model is decoupled
from the KB, so we can train it from large text cor-
pora. Second, natural language utterances often do
not express predicates explicitly, e.g., the question
“What is Italy’s money?” expresses the binary
predicate CurrencyOf with a possessive construc-
tion. Paraphrasing methods are well-suited for
handling such text-to-text gaps. Our framework
accommodates any paraphrasing method, and in
this paper we propose an association model that
learns to associate natural language phrases that
co-occur frequently in a monolingual parallel cor-
pus, combined with a vector space model, which
learns to score the similarity between vector rep-
resentations of natural language utterances (Sec-
tion 5).

Model We define a discriminative log-linear
model that places a probability distribution over
pairs of logical forms and canonical utterances
(c, z), given an utterance x:

p

✓

(c, z | x) = exp{�(x, c, z)>✓}P
z

02Z
x

,c

02C
z

exp{�(x, c0, z0)>✓} ,

where ✓ 2 Rb is the vector of parameters to be
learned, and �(x, c, z) is a feature vector extracted
from the input utterance x, the canonical utterance
c, and the logical form z. Note that the candidate
set of logical forms Z

x

and canonical utterances
C
x

are constructed during the canonical utterance
construction phase.

The model score decomposes into two terms:

�(x, c, z)

>
✓ = �pr(x, c)

>
✓pr + �lf(x, z)

>
✓lf,

where the parameters ✓pr define the paraphrase
model (Section 5), which is based on features ex-
tracted from text only (the input and canonical ut-
terance). The parameters ✓lf correspond to seman-
tic parsing features based on the logical form and

input utterance, and are briefly described in this
section.

Many existing paraphrase models introduce la-
tent variables to describe the derivation of c from
x, e.g., with transformations (Heilman and Smith,
2010; Stern and Dagan, 2011) or alignments
(Haghighi et al., 2005; Das and Smith, 2009;
Chang et al., 2010). However, we opt for a sim-
pler paraphrase model without latent variables in
the interest of efficiency.

Logical form features The parameters ✓lf corre-
spond to the following features adopted from Be-
rant et al. (2013). For a logical form z, we extract
the size of its denotation JzKK. We also add all bi-
nary predicates in z as features. Moreover, we ex-
tract a popularity feature for predicates based on
the number of instances they have in K. For Free-
base entities, we extract a popularity feature based
on the entity frequency in an entity linked subset
of Reverb (Lin et al., 2012). Lastly, Freebase for-
mulas have types (see Section 4), and we conjoin
the type of z with the first word of x, to capture the
correlation between a word (e.g., “where”) with
the Freebase type (e.g., Location).

Learning As our training data consists of
question-answer pairs (x

i

, y

i

), we maximize the
log-likelihood of the correct answer. The proba-
bility of an answer y is obtained by marginaliz-
ing over canonical utterances c and logical forms
z whose denotation is y. Formally, our objective
function O(✓) is as follows:

O(✓) =

nX

i=1

log p

✓

(y

i

| x
i

)� �k✓k1,

p

✓

(y | x) =
X

z2Z
x

:y=JzKK

X

c2C
z

p

✓

(c, z | x).

The strength � of the L1 regularizer is set based
on cross-validation. We optimize the objective by
initializing the parameters ✓ to zero and running
AdaGrad (Duchi et al., 2010). We approximate
the set of pairs of logical forms and canonical ut-
terances with a beam of size 2,000.

4 Canonical utterance construction

We construct canonical utterances in two steps.
Given an input utterance x, we first construct a
set of logical forms Z

x

, and then generate canon-
ical utterances from each z 2 Z

x

. Both steps are
performed with a small and simple set of deter-
ministic rules, which suffices for our datasets, as

Set of logical forms

date logical forms Z
x

, and then for each z 2 Z
x

generate a small set of canonical natural language
utterances C

z

. Our goal at this point is only to gen-
erate a manageable set of logical forms containing
the correct one, and then generate an appropriate
canonical utterance from it. This strategy is feasi-
ble in factoid QA where compositionality is low,
and so the size of Z

x

is limited (Section 4).

Paraphrasing We score the canonical utter-
ances in C

z

with respect to the input utterance x

using a paraphrase model, which offers two ad-
vantages. First, the paraphrase model is decoupled
from the KB, so we can train it from large text cor-
pora. Second, natural language utterances often do
not express predicates explicitly, e.g., the question
“What is Italy’s money?” expresses the binary
predicate CurrencyOf with a possessive construc-
tion. Paraphrasing methods are well-suited for
handling such text-to-text gaps. Our framework
accommodates any paraphrasing method, and in
this paper we propose an association model that
learns to associate natural language phrases that
co-occur frequently in a monolingual parallel cor-
pus, combined with a vector space model, which
learns to score the similarity between vector rep-
resentations of natural language utterances (Sec-
tion 5).

Model We define a discriminative log-linear
model that places a probability distribution over
pairs of logical forms and canonical utterances
(c, z), given an utterance x:

p

✓

(c, z | x) = exp{�(x, c, z)>✓}P
z

02Z
x

,c

02C
z

exp{�(x, c0, z0)>✓} ,

where ✓ 2 Rb is the vector of parameters to be
learned, and �(x, c, z) is a feature vector extracted
from the input utterance x, the canonical utterance
c, and the logical form z. Note that the candidate
set of logical forms Z

x

and canonical utterances
C
x

are constructed during the canonical utterance
construction phase.

The model score decomposes into two terms:

�(x, c, z)

>
✓ = �pr(x, c)

>
✓pr + �lf(x, z)

>
✓lf,

where the parameters ✓pr define the paraphrase
model (Section 5), which is based on features ex-
tracted from text only (the input and canonical ut-
terance). The parameters ✓lf correspond to seman-
tic parsing features based on the logical form and

input utterance, and are briefly described in this
section.

Many existing paraphrase models introduce la-
tent variables to describe the derivation of c from
x, e.g., with transformations (Heilman and Smith,
2010; Stern and Dagan, 2011) or alignments
(Haghighi et al., 2005; Das and Smith, 2009;
Chang et al., 2010). However, we opt for a sim-
pler paraphrase model without latent variables in
the interest of efficiency.

Logical form features The parameters ✓lf corre-
spond to the following features adopted from Be-
rant et al. (2013). For a logical form z, we extract
the size of its denotation JzKK. We also add all bi-
nary predicates in z as features. Moreover, we ex-
tract a popularity feature for predicates based on
the number of instances they have in K. For Free-
base entities, we extract a popularity feature based
on the entity frequency in an entity linked subset
of Reverb (Lin et al., 2012). Lastly, Freebase for-
mulas have types (see Section 4), and we conjoin
the type of z with the first word of x, to capture the
correlation between a word (e.g., “where”) with
the Freebase type (e.g., Location).

Learning As our training data consists of
question-answer pairs (x

i

, y

i

), we maximize the
log-likelihood of the correct answer. The proba-
bility of an answer y is obtained by marginaliz-
ing over canonical utterances c and logical forms
z whose denotation is y. Formally, our objective
function O(✓) is as follows:

O(✓) =

nX

i=1

log p

✓
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)� �k✓k1,
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✓

(y | x) =
X
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:y=JzKK
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✓

(c, z | x).

The strength � of the L1 regularizer is set based
on cross-validation. We optimize the objective by
initializing the parameters ✓ to zero and running
AdaGrad (Duchi et al., 2010). We approximate
the set of pairs of logical forms and canonical ut-
terances with a beam of size 2,000.

4 Canonical utterance construction

We construct canonical utterances in two steps.
Given an input utterance x, we first construct a
set of logical forms Z

x

, and then generate canon-
ical utterances from each z 2 Z

x

. Both steps are
performed with a small and simple set of deter-
ministic rules, which suffices for our datasets, as

# Template Example Question

1 p.e Directed.TopGun Who directed Top Gun?
2 p1.p2.e Employment.EmployerOf.SteveBalmer Where does Steve Balmer work?
3 p.(p1.e1 u p2.e2) Character.(Actor.BradPitt u Film.Troy) Who did Brad Pitt play in Troy?
4 Type.t u z Type.Composer u SpeakerOf.French What composers spoke French?
5 count(z) count(BoatDesigner.NatHerreshoff) How many ships were designed by

Nat Herreshoff?

Table 1: Logical form templates, where p, p1, p2 are Freebase properties, e, e1, e2 are Freebase entities, t is a Freebase type,
and z is a logical form.

d(p) Categ. Rule Example

p.e NP WH d(t) has d(e) as NP ? What election contest has George Bush as winner?

VP WH d(t) (AUX) VP d(e) ? What radio station serves area New-York?
PP WH d(t) PP d(e) ? What beer from region Argentina?
NP VP WH d(t) VP the NP d(e) ? What mass transportation system served the area Berlin?

R(p).e NP WH d(t) is the NP of d(e) ? What location is the place of birth of Elvis Presley?
VP WH d(t) AUX d(e) VP ? What film is Brazil featured in?
PP WH d(t) d(e) PP ? What destination Spanish steps near travel destination?
NP VP WH NP is VP by d(e) ? What structure is designed by Herod?

Table 2: Generation rules for templates of the form p.e and R[p].e based on the syntactic category of the property description.
Freebase descriptions for the type, entity, and property are denoted by d(t), d(e) and d(p) respectively. The surface form of the
auxiliary AUX is determined by the POS tag of the verb inside the VP tree.

WH d(t) d(b) d(e) ?. On the WEBQUESTIONS
dataset, we generate an average of 1,423 canonical
utterances c per input utterance x. In Section 6,
we show that an even simpler method of gener-
ating canonical utterances by concatenating Free-
base descriptions hurts accuracy by only a modest
amount.

5 Paraphrasing

Once the candidate set of logical forms paired with
canonical utterances is constructed, our problem
is reduced to scoring pairs (c, z) based on a para-
phrase model. The NLP paraphrase literature is
vast and ranges from simple methods employing
surface features (Wan et al., 2006), through vec-
tor space models (Socher et al., 2011), to latent
variable models (Das and Smith, 2009; Wang and
Manning, 2010; Stern and Dagan, 2011).

In this paper, we focus on two paraphrase mod-
els that emphasize simplicity and efficiency. This
is important since for each question-answer pair,
we consider thousands of canonical utterances as
potential paraphrases. In contrast, traditional para-
phrase detection (Dolan et al., 2004) and Recog-
nizing Textual Entailment (RTE) tasks (Dagan et
al., 2013) consider examples consisting of only a
single pair of candidate paraphrases.

Our paraphrase model decomposes into an as-
sociation model and a vector space model:

�pr(x, c)
>
✓pr = �as(x, c)

>
✓as + �vs(x, c)

>
✓vs.

x : What type of music did Richard Wagner play

c : What is the musical genres of Richard Wagner

Figure 3: Token associations extracted for a paraphrase
pair. Blue and dashed (red and solid) indicate positive (neg-
ative) score. Line width is proportional to the absolute value
of the score.

5.1 Association model

The goal of the association model is to deter-
mine whether x and c contain phrases that are
likely to be paraphrases. Given an utterance x =

hx0, x1, .., xn�1i, we denote by x

i:j the span from
token i to token j. For each pair of utterances
(x, c), we go through all spans of x and c and
identify a set of pairs of potential paraphrases
(x

i:j , c
i

0:j0), which we call associations. (We will
describe how associations are identified shortly.)
We then define features on each association; the
weighted combination of these features yields a
score. In this light, associations can be viewed
as soft paraphrase rules. Figure 3 presents exam-
ples of associations extracted from a paraphrase
pair and visualizes the learned scores. We can see
that our model learns a positive score for associ-
ating “type” with “genres”, and a negative score
for associating “is” with “play”.

We define associations in x and c primarily by
looking up phrase pairs in a phrase table con-
structed using the PARALEX corpus (Fader et al.,
2013). PARALEX is a large monolingual parallel
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utterances C
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. Our goal at this point is only to gen-
erate a manageable set of logical forms containing
the correct one, and then generate an appropriate
canonical utterance from it. This strategy is feasi-
ble in factoid QA where compositionality is low,
and so the size of Z

x

is limited (Section 4).

Paraphrasing We score the canonical utter-
ances in C

z

with respect to the input utterance x

using a paraphrase model, which offers two ad-
vantages. First, the paraphrase model is decoupled
from the KB, so we can train it from large text cor-
pora. Second, natural language utterances often do
not express predicates explicitly, e.g., the question
“What is Italy’s money?” expresses the binary
predicate CurrencyOf with a possessive construc-
tion. Paraphrasing methods are well-suited for
handling such text-to-text gaps. Our framework
accommodates any paraphrasing method, and in
this paper we propose an association model that
learns to associate natural language phrases that
co-occur frequently in a monolingual parallel cor-
pus, combined with a vector space model, which
learns to score the similarity between vector rep-
resentations of natural language utterances (Sec-
tion 5).

Model We define a discriminative log-linear
model that places a probability distribution over
pairs of logical forms and canonical utterances
(c, z), given an utterance x:

p

✓

(c, z | x) = exp{�(x, c, z)>✓}P
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exp{�(x, c0, z0)>✓} ,

where ✓ 2 Rb is the vector of parameters to be
learned, and �(x, c, z) is a feature vector extracted
from the input utterance x, the canonical utterance
c, and the logical form z. Note that the candidate
set of logical forms Z

x

and canonical utterances
C
x

are constructed during the canonical utterance
construction phase.

The model score decomposes into two terms:

�(x, c, z)

>
✓ = �pr(x, c)

>
✓pr + �lf(x, z)

>
✓lf,

where the parameters ✓pr define the paraphrase
model (Section 5), which is based on features ex-
tracted from text only (the input and canonical ut-
terance). The parameters ✓lf correspond to seman-
tic parsing features based on the logical form and

input utterance, and are briefly described in this
section.

Many existing paraphrase models introduce la-
tent variables to describe the derivation of c from
x, e.g., with transformations (Heilman and Smith,
2010; Stern and Dagan, 2011) or alignments
(Haghighi et al., 2005; Das and Smith, 2009;
Chang et al., 2010). However, we opt for a sim-
pler paraphrase model without latent variables in
the interest of efficiency.

Logical form features The parameters ✓lf corre-
spond to the following features adopted from Be-
rant et al. (2013). For a logical form z, we extract
the size of its denotation JzKK. We also add all bi-
nary predicates in z as features. Moreover, we ex-
tract a popularity feature for predicates based on
the number of instances they have in K. For Free-
base entities, we extract a popularity feature based
on the entity frequency in an entity linked subset
of Reverb (Lin et al., 2012). Lastly, Freebase for-
mulas have types (see Section 4), and we conjoin
the type of z with the first word of x, to capture the
correlation between a word (e.g., “where”) with
the Freebase type (e.g., Location).

Learning As our training data consists of
question-answer pairs (x

i

, y

i

), we maximize the
log-likelihood of the correct answer. The proba-
bility of an answer y is obtained by marginaliz-
ing over canonical utterances c and logical forms
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The strength � of the L1 regularizer is set based
on cross-validation. We optimize the objective by
initializing the parameters ✓ to zero and running
AdaGrad (Duchi et al., 2010). We approximate
the set of pairs of logical forms and canonical ut-
terances with a beam of size 2,000.
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We construct canonical utterances in two steps.
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, and then generate canon-
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. Both steps are
performed with a small and simple set of deter-
ministic rules, which suffices for our datasets, as

date logical forms Z
x

, and then for each z 2 Z
x

generate a small set of canonical natural language
utterances C

z

. Our goal at this point is only to gen-
erate a manageable set of logical forms containing
the correct one, and then generate an appropriate
canonical utterance from it. This strategy is feasi-
ble in factoid QA where compositionality is low,
and so the size of Z

x

is limited (Section 4).

Paraphrasing We score the canonical utter-
ances in C

z

with respect to the input utterance x

using a paraphrase model, which offers two ad-
vantages. First, the paraphrase model is decoupled
from the KB, so we can train it from large text cor-
pora. Second, natural language utterances often do
not express predicates explicitly, e.g., the question
“What is Italy’s money?” expresses the binary
predicate CurrencyOf with a possessive construc-
tion. Paraphrasing methods are well-suited for
handling such text-to-text gaps. Our framework
accommodates any paraphrasing method, and in
this paper we propose an association model that
learns to associate natural language phrases that
co-occur frequently in a monolingual parallel cor-
pus, combined with a vector space model, which
learns to score the similarity between vector rep-
resentations of natural language utterances (Sec-
tion 5).

Model We define a discriminative log-linear
model that places a probability distribution over
pairs of logical forms and canonical utterances
(c, z), given an utterance x:

p

✓

(c, z | x) = exp{�(x, c, z)>✓}P
z

02Z
x

,c

02C
z

exp{�(x, c0, z0)>✓} ,

where ✓ 2 Rb is the vector of parameters to be
learned, and �(x, c, z) is a feature vector extracted
from the input utterance x, the canonical utterance
c, and the logical form z. Note that the candidate
set of logical forms Z

x

and canonical utterances
C
x

are constructed during the canonical utterance
construction phase.

The model score decomposes into two terms:

�(x, c, z)

>
✓ = �pr(x, c)

>
✓pr + �lf(x, z)

>
✓lf,

where the parameters ✓pr define the paraphrase
model (Section 5), which is based on features ex-
tracted from text only (the input and canonical ut-
terance). The parameters ✓lf correspond to seman-
tic parsing features based on the logical form and

input utterance, and are briefly described in this
section.

Many existing paraphrase models introduce la-
tent variables to describe the derivation of c from
x, e.g., with transformations (Heilman and Smith,
2010; Stern and Dagan, 2011) or alignments
(Haghighi et al., 2005; Das and Smith, 2009;
Chang et al., 2010). However, we opt for a sim-
pler paraphrase model without latent variables in
the interest of efficiency.

Logical form features The parameters ✓lf corre-
spond to the following features adopted from Be-
rant et al. (2013). For a logical form z, we extract
the size of its denotation JzKK. We also add all bi-
nary predicates in z as features. Moreover, we ex-
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The strength � of the L1 regularizer is set based
on cross-validation. We optimize the objective by
initializing the parameters ✓ to zero and running
AdaGrad (Duchi et al., 2010). We approximate
the set of pairs of logical forms and canonical ut-
terances with a beam of size 2,000.

4 Canonical utterance construction

We construct canonical utterances in two steps.
Given an input utterance x, we first construct a
set of logical forms Z

x

, and then generate canon-
ical utterances from each z 2 Z

x

. Both steps are
performed with a small and simple set of deter-
ministic rules, which suffices for our datasets, as
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[2] Mapping utterances to logical forms is hard, but generating natural language canonical utterances is not

# Template Example Question

1 p.e Directed.TopGun Who directed Top Gun?
2 p1.p2.e Employment.EmployerOf.SteveBalmer Where does Steve Balmer work?
3 p.(p1.e1 u p2.e2) Character.(Actor.BradPitt u Film.Troy) Who did Brad Pitt play in Troy?
4 Type.t u z Type.Composer u SpeakerOf.French What composers spoke French?
5 count(z) count(BoatDesigner.NatHerreshoff) How many ships were designed by

Nat Herreshoff?

Table 1: Logical form templates, where p, p1, p2 are Freebase properties, e, e1, e2 are Freebase entities, t is a Freebase type,
and z is a logical form.

d(p) Categ. Rule Example

p.e NP WH d(t) has d(e) as NP ? What election contest has George Bush as winner?

VP WH d(t) (AUX) VP d(e) ? What radio station serves area New-York?
PP WH d(t) PP d(e) ? What beer from region Argentina?
NP VP WH d(t) VP the NP d(e) ? What mass transportation system served the area Berlin?

R(p).e NP WH d(t) is the NP of d(e) ? What location is the place of birth of Elvis Presley?
VP WH d(t) AUX d(e) VP ? What film is Brazil featured in?
PP WH d(t) d(e) PP ? What destination Spanish steps near travel destination?
NP VP WH NP is VP by d(e) ? What structure is designed by Herod?

Table 2: Generation rules for templates of the form p.e and R[p].e based on the syntactic category of the property description.
Freebase descriptions for the type, entity, and property are denoted by d(t), d(e) and d(p) respectively. The surface form of the
auxiliary AUX is determined by the POS tag of the verb inside the VP tree.

WH d(t) d(b) d(e) ?. On the WEBQUESTIONS
dataset, we generate an average of 1,423 canonical
utterances c per input utterance x. In Section 6,
we show that an even simpler method of gener-
ating canonical utterances by concatenating Free-
base descriptions hurts accuracy by only a modest
amount.

5 Paraphrasing

Once the candidate set of logical forms paired with
canonical utterances is constructed, our problem
is reduced to scoring pairs (c, z) based on a para-
phrase model. The NLP paraphrase literature is
vast and ranges from simple methods employing
surface features (Wan et al., 2006), through vec-
tor space models (Socher et al., 2011), to latent
variable models (Das and Smith, 2009; Wang and
Manning, 2010; Stern and Dagan, 2011).

In this paper, we focus on two paraphrase mod-
els that emphasize simplicity and efficiency. This
is important since for each question-answer pair,
we consider thousands of canonical utterances as
potential paraphrases. In contrast, traditional para-
phrase detection (Dolan et al., 2004) and Recog-
nizing Textual Entailment (RTE) tasks (Dagan et
al., 2013) consider examples consisting of only a
single pair of candidate paraphrases.

Our paraphrase model decomposes into an as-
sociation model and a vector space model:

�pr(x, c)
>
✓pr = �as(x, c)

>
✓as + �vs(x, c)

>
✓vs.

x : What type of music did Richard Wagner play

c : What is the musical genres of Richard Wagner

Figure 3: Token associations extracted for a paraphrase
pair. Blue and dashed (red and solid) indicate positive (neg-
ative) score. Line width is proportional to the absolute value
of the score.

5.1 Association model

The goal of the association model is to deter-
mine whether x and c contain phrases that are
likely to be paraphrases. Given an utterance x =

hx0, x1, .., xn�1i, we denote by x

i:j the span from
token i to token j. For each pair of utterances
(x, c), we go through all spans of x and c and
identify a set of pairs of potential paraphrases
(x

i:j , c
i

0:j0), which we call associations. (We will
describe how associations are identified shortly.)
We then define features on each association; the
weighted combination of these features yields a
score. In this light, associations can be viewed
as soft paraphrase rules. Figure 3 presents exam-
ples of associations extracted from a paraphrase
pair and visualizes the learned scores. We can see
that our model learns a positive score for associ-
ating “type” with “genres”, and a negative score
for associating “is” with “play”.

We define associations in x and c primarily by
looking up phrase pairs in a phrase table con-
structed using the PARALEX corpus (Fader et al.,
2013). PARALEX is a large monolingual parallel
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Figure 2: The main challenge in semantic parsing is cop-
ing with the mismatch between language and the KB. (a)
Traditionally, semantic parsing maps utterances directly to
logical forms. (b) Kwiatkowski et al. (2013) map the utter-
ance to an underspecified logical form, and perform ontology
matching to handle the mismatch. (c) We approach the prob-
lem in the other direction, generating canonical utterances for
logical forms, and use paraphrase models to handle the mis-
match.

tically generate canonical utterances for each log-
ical form based on the text descriptions of predi-
cates from the KB. Finally, we choose the canoni-
cal utterance that best paraphrases the input utter-
ance, and thereby the logical form that generated
it. We use two complementary paraphrase mod-
els: an association model based on aligned phrase
pairs extracted from a monolingual parallel cor-
pus, and a vector space model, which represents
each utterance as a vector and learns a similarity
score between them. The entire system is trained
jointly from question-answer pairs only.

Our work relates to recent lines of research
in semantic parsing and question answering.
Kwiatkowski et al. (2013) first maps utterances to
a domain-independent intermediate logical form,
and then performs ontology matching to produce
the final logical form. In some sense, we ap-
proach the problem from the opposite end, using
an intermediate utterance, which allows us to em-
ploy paraphrasing methods (Figure 2). Fader et
al. (2013) presented a QA system that maps ques-
tions onto simple queries against Open IE extrac-
tions, by learning paraphrases from a large mono-
lingual parallel corpus, and performing a single
paraphrasing step. We adopt the idea of using
paraphrasing for QA, but suggest a more general
paraphrase model and work against a formal KB
(Freebase).

We apply our semantic parser on two datasets:
WEBQUESTIONS (Berant et al., 2013), which
contains 5,810 question-answer pairs with
common questions asked by web users; and

FREE917 (Cai and Yates, 2013), which has
917 questions manually authored by annota-
tors. On WEBQUESTIONS, we obtain a relative
improvement of 12% in accuracy over the
state-of-the-art, and on FREE917 we match the
current best performing system. The source
code of our system PARASEMPRE is released
at http://www-nlp.stanford.edu/
software/sempre/.

2 Setup

Our task is as follows: Given (i) a knowledge
base K, and (ii) a training set of question-answer
pairs {(x

i

, y

i

)}n
i=1, output a semantic parser that

maps new questions x to answers y via latent log-
ical forms z. Let E denote a set of entities (e.g.,
BillGates), and let P denote a set of properties
(e.g., PlaceOfBirth). A knowledge base K is a
set of assertions (e1, p, e2) 2 E ⇥ P ⇥ E (e.g.,
(BillGates, PlaceOfBirth, Seattle)). We use
the Freebase KB (Google, 2013), which has 41M
entities, 19K properties, and 596M assertions.

To query the KB, we use a logical language
called simple �-DCS. In simple �-DCS, an
entity (e.g., Seattle) is a unary predicate
(i.e., a subset of E) denoting a singleton set
containing that entity. A property (which is a
binary predicate) can be joined with a unary
predicate; e.g., Founded.Microsoft denotes
the entities that are Microsoft founders. In
PlaceOfBirth.Seattle u Founded.Microsoft,
an intersection operator allows us to denote
the set of Seattle-born Microsoft founders.
A reverse operator reverses the order of ar-
guments: R[PlaceOfBirth].BillGates

denotes Bill Gates’s birthplace (in con-
trast to PlaceOfBirth.Seattle). Lastly,
count(Founded.Microsoft) denotes set cardinal-
ity, in this case, the number of Microsoft founders.
The denotation of a logical form z with respect to
a KB K is given by JzKK. For a formal description
of simple �-DCS, see Liang (2013) and Berant et
al. (2013).

3 Model overview

We now present the general framework for seman-
tic parsing via paraphrasing, including the model
and the learning algorithm. In Sections 4 and 5,
we provide the details of our implementation.

Canonical utterance construction Given an ut-
terance x and the KB, we construct a set of candi-
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date logical forms Z
x

, and then for each z 2 Z
x

generate a small set of canonical natural language
utterances C

z

. Our goal at this point is only to gen-
erate a manageable set of logical forms containing
the correct one, and then generate an appropriate
canonical utterance from it. This strategy is feasi-
ble in factoid QA where compositionality is low,
and so the size of Z

x

is limited (Section 4).

Paraphrasing We score the canonical utter-
ances in C

z

with respect to the input utterance x

using a paraphrase model, which offers two ad-
vantages. First, the paraphrase model is decoupled
from the KB, so we can train it from large text cor-
pora. Second, natural language utterances often do
not express predicates explicitly, e.g., the question
“What is Italy’s money?” expresses the binary
predicate CurrencyOf with a possessive construc-
tion. Paraphrasing methods are well-suited for
handling such text-to-text gaps. Our framework
accommodates any paraphrasing method, and in
this paper we propose an association model that
learns to associate natural language phrases that
co-occur frequently in a monolingual parallel cor-
pus, combined with a vector space model, which
learns to score the similarity between vector rep-
resentations of natural language utterances (Sec-
tion 5).

Model We define a discriminative log-linear
model that places a probability distribution over
pairs of logical forms and canonical utterances
(c, z), given an utterance x:

p

✓

(c, z | x) = exp{�(x, c, z)>✓}P
z

02Z
x

,c

02C
z

exp{�(x, c0, z0)>✓} ,

where ✓ 2 Rb is the vector of parameters to be
learned, and �(x, c, z) is a feature vector extracted
from the input utterance x, the canonical utterance
c, and the logical form z. Note that the candidate
set of logical forms Z

x

and canonical utterances
C
x

are constructed during the canonical utterance
construction phase.

The model score decomposes into two terms:

�(x, c, z)

>
✓ = �pr(x, c)

>
✓pr + �lf(x, z)

>
✓lf,

where the parameters ✓pr define the paraphrase
model (Section 5), which is based on features ex-
tracted from text only (the input and canonical ut-
terance). The parameters ✓lf correspond to seman-
tic parsing features based on the logical form and

input utterance, and are briefly described in this
section.

Many existing paraphrase models introduce la-
tent variables to describe the derivation of c from
x, e.g., with transformations (Heilman and Smith,
2010; Stern and Dagan, 2011) or alignments
(Haghighi et al., 2005; Das and Smith, 2009;
Chang et al., 2010). However, we opt for a sim-
pler paraphrase model without latent variables in
the interest of efficiency.

Logical form features The parameters ✓lf corre-
spond to the following features adopted from Be-
rant et al. (2013). For a logical form z, we extract
the size of its denotation JzKK. We also add all bi-
nary predicates in z as features. Moreover, we ex-
tract a popularity feature for predicates based on
the number of instances they have in K. For Free-
base entities, we extract a popularity feature based
on the entity frequency in an entity linked subset
of Reverb (Lin et al., 2012). Lastly, Freebase for-
mulas have types (see Section 4), and we conjoin
the type of z with the first word of x, to capture the
correlation between a word (e.g., “where”) with
the Freebase type (e.g., Location).

Learning As our training data consists of
question-answer pairs (x

i

, y

i

), we maximize the
log-likelihood of the correct answer. The proba-
bility of an answer y is obtained by marginaliz-
ing over canonical utterances c and logical forms
z whose denotation is y. Formally, our objective
function O(✓) is as follows:

O(✓) =

nX

i=1

log p

✓

(y

i

| x
i

)� �k✓k1,

p

✓

(y | x) =
X

z2Z
x

:y=JzKK

X

c2C
z

p

✓

(c, z | x).

The strength � of the L1 regularizer is set based
on cross-validation. We optimize the objective by
initializing the parameters ✓ to zero and running
AdaGrad (Duchi et al., 2010). We approximate
the set of pairs of logical forms and canonical ut-
terances with a beam of size 2,000.

4 Canonical utterance construction

We construct canonical utterances in two steps.
Given an input utterance x, we first construct a
set of logical forms Z

x

, and then generate canon-
ical utterances from each z 2 Z

x

. Both steps are
performed with a small and simple set of deter-
ministic rules, which suffices for our datasets, as
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rant et al. (2013). For a logical form z, we extract
the size of its denotation JzKK. We also add all bi-
nary predicates in z as features. Moreover, we ex-
tract a popularity feature for predicates based on
the number of instances they have in K. For Free-
base entities, we extract a popularity feature based
on the entity frequency in an entity linked subset
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The strength � of the L1 regularizer is set based
on cross-validation. We optimize the objective by
initializing the parameters ✓ to zero and running
AdaGrad (Duchi et al., 2010). We approximate
the set of pairs of logical forms and canonical ut-
terances with a beam of size 2,000.

4 Canonical utterance construction

We construct canonical utterances in two steps.
Given an input utterance x, we first construct a
set of logical forms Z

x

, and then generate canon-
ical utterances from each z 2 Z

x

. Both steps are
performed with a small and simple set of deter-
ministic rules, which suffices for our datasets, as
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# Template Example Question

1 p.e Directed.TopGun Who directed Top Gun?
2 p1.p2.e Employment.EmployerOf.SteveBalmer Where does Steve Balmer work?
3 p.(p1.e1 u p2.e2) Character.(Actor.BradPitt u Film.Troy) Who did Brad Pitt play in Troy?
4 Type.t u z Type.Composer u SpeakerOf.French What composers spoke French?
5 count(z) count(BoatDesigner.NatHerreshoff) How many ships were designed by

Nat Herreshoff?

Table 1: Logical form templates, where p, p1, p2 are Freebase properties, e, e1, e2 are Freebase entities, t is a Freebase type,
and z is a logical form.

d(p) Categ. Rule Example

p.e NP WH d(t) has d(e) as NP ? What election contest has George Bush as winner?

VP WH d(t) (AUX) VP d(e) ? What radio station serves area New-York?
PP WH d(t) PP d(e) ? What beer from region Argentina?
NP VP WH d(t) VP the NP d(e) ? What mass transportation system served the area Berlin?

R(p).e NP WH d(t) is the NP of d(e) ? What location is the place of birth of Elvis Presley?
VP WH d(t) AUX d(e) VP ? What film is Brazil featured in?
PP WH d(t) d(e) PP ? What destination Spanish steps near travel destination?
NP VP WH NP is VP by d(e) ? What structure is designed by Herod?

Table 2: Generation rules for templates of the form p.e and R[p].e based on the syntactic category of the property description.
Freebase descriptions for the type, entity, and property are denoted by d(t), d(e) and d(p) respectively. The surface form of the
auxiliary AUX is determined by the POS tag of the verb inside the VP tree.

WH d(t) d(b) d(e) ?. On the WEBQUESTIONS
dataset, we generate an average of 1,423 canonical
utterances c per input utterance x. In Section 6,
we show that an even simpler method of gener-
ating canonical utterances by concatenating Free-
base descriptions hurts accuracy by only a modest
amount.

5 Paraphrasing

Once the candidate set of logical forms paired with
canonical utterances is constructed, our problem
is reduced to scoring pairs (c, z) based on a para-
phrase model. The NLP paraphrase literature is
vast and ranges from simple methods employing
surface features (Wan et al., 2006), through vec-
tor space models (Socher et al., 2011), to latent
variable models (Das and Smith, 2009; Wang and
Manning, 2010; Stern and Dagan, 2011).

In this paper, we focus on two paraphrase mod-
els that emphasize simplicity and efficiency. This
is important since for each question-answer pair,
we consider thousands of canonical utterances as
potential paraphrases. In contrast, traditional para-
phrase detection (Dolan et al., 2004) and Recog-
nizing Textual Entailment (RTE) tasks (Dagan et
al., 2013) consider examples consisting of only a
single pair of candidate paraphrases.

Our paraphrase model decomposes into an as-
sociation model and a vector space model:

�pr(x, c)
>
✓pr = �as(x, c)

>
✓as + �vs(x, c)

>
✓vs.

x : What type of music did Richard Wagner play

c : What is the musical genres of Richard Wagner

Figure 3: Token associations extracted for a paraphrase
pair. Blue and dashed (red and solid) indicate positive (neg-
ative) score. Line width is proportional to the absolute value
of the score.

5.1 Association model

The goal of the association model is to deter-
mine whether x and c contain phrases that are
likely to be paraphrases. Given an utterance x =

hx0, x1, .., xn�1i, we denote by x

i:j the span from
token i to token j. For each pair of utterances
(x, c), we go through all spans of x and c and
identify a set of pairs of potential paraphrases
(x

i:j , c
i

0:j0), which we call associations. (We will
describe how associations are identified shortly.)
We then define features on each association; the
weighted combination of these features yields a
score. In this light, associations can be viewed
as soft paraphrase rules. Figure 3 presents exam-
ples of associations extracted from a paraphrase
pair and visualizes the learned scores. We can see
that our model learns a positive score for associ-
ating “type” with “genres”, and a negative score
for associating “is” with “play”.

We define associations in x and c primarily by
looking up phrase pairs in a phrase table con-
structed using the PARALEX corpus (Fader et al.,
2013). PARALEX is a large monolingual parallel

Association model 
• Determine if x and c contain phrases that are likely to be paraphrases 
• Consider all spans of x and c and identify associations 
• Using PARALEX corpus [1] to look up phrase pairs in a phrase table 
• Using WordNet for the derivation links
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3 p.(p1.e1 u p2.e2) Character.(Actor.BradPitt u Film.Troy) Who did Brad Pitt play in Troy?
4 Type.t u z Type.Composer u SpeakerOf.French What composers spoke French?
5 count(z) count(BoatDesigner.NatHerreshoff) How many ships were designed by

Nat Herreshoff?

Table 1: Logical form templates, where p, p1, p2 are Freebase properties, e, e1, e2 are Freebase entities, t is a Freebase type,
and z is a logical form.
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Freebase descriptions for the type, entity, and property are denoted by d(t), d(e) and d(p) respectively. The surface form of the
auxiliary AUX is determined by the POS tag of the verb inside the VP tree.
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amount.
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tor space models (Socher et al., 2011), to latent
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potential paraphrases. In contrast, traditional para-
phrase detection (Dolan et al., 2004) and Recog-
nizing Textual Entailment (RTE) tasks (Dagan et
al., 2013) consider examples consisting of only a
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The goal of the association model is to deter-
mine whether x and c contain phrases that are
likely to be paraphrases. Given an utterance x =

hx0, x1, .., xn�1i, we denote by x

i:j the span from
token i to token j. For each pair of utterances
(x, c), we go through all spans of x and c and
identify a set of pairs of potential paraphrases
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0:j0), which we call associations. (We will
describe how associations are identified shortly.)
We then define features on each association; the
weighted combination of these features yields a
score. In this light, associations can be viewed
as soft paraphrase rules. Figure 3 presents exam-
ples of associations extracted from a paraphrase
pair and visualizes the learned scores. We can see
that our model learns a positive score for associ-
ating “type” with “genres”, and a negative score
for associating “is” with “play”.

We define associations in x and c primarily by
looking up phrase pairs in a phrase table con-
structed using the PARALEX corpus (Fader et al.,
2013). PARALEX is a large monolingual parallel

[1] A. Fader et. al. “Paraphrase-Driven Learning for Open Question Answering” ACL 2013

Category Description

Assoc. lemma(x
i:j) ^ lemma(c

i

0:j0)
pos(x

i:j) ^ pos(c
i

0:j0)
lemma(x

i:j) = lemma(c
i

0:j0)?
pos(x

i:j) = pos(c
i

0:j0)?
lemma(x

i:j) and lemma(c
i

0:j0) are synonyms?
lemma(x

i:j) and lemma(c
i

0:j0) are derivations?
Deletions Deleted lemma and POS tag

Table 3: Full feature set in the association model. x
i:j and

c

i

0:j0 denote spans from x and c. pos(x
i:j) and lemma(x

i:j)
denote the POS tag and lemma sequence of x

i:j .

corpora, containing 18 million pairs of question
paraphrases from wikianswers.com, which
were tagged as having the same meaning by users.
PARALEX is suitable for our needs since it fo-
cuses on question paraphrases. For example, the
phrase “do for a living” occurs mostly in ques-
tions, and we can extract associations for this
phrase from PARALEX. Paraphrase pairs in PAR-
ALEX are word-aligned using standard machine
translation methods. We use the word alignments
to construct a phrase table by applying the con-
sistent phrase pair heuristic (Och and Ney, 2004)
to all 5-grams. This results in a phrase table with
approximately 1.3 million phrase pairs. We let A
denote this set of mined candidate associations.

For a pair (x, c), we also consider as candidate
associations the set B (represented implicitly),
which contains token pairs (x

i

, c

i

0
) such that x

i

and c

i

0 share the same lemma, the same POS tag,
or are linked through a derivation link on WordNet
(Fellbaum, 1998). This allows us to learn para-
phrases for words that appear in our datasets but
are not covered by the phrase table, and to han-
dle nominalizations for phrase pairs such as “Who
designed the game of life?” and “What game de-
signer is the designer of the game of life?”.

Our model goes over all possible spans of x

and c and constructs all possible associations from
A and B. This results in many poor associations
(e.g., “play” and “the”), but as illustrated in Fig-
ure 3, we learn weights that discriminate good
from bad associations. Table 3 specifies the full
set of features. Note that unlike standard para-
phrase detection and RTE systems, we use lexi-
calized features, firing approximately 400,000 fea-
tures on WEBQUESTIONS. By extracting POS
features, we obtain soft syntactic rules, e.g., the
feature “JJ N ^ N” indicates that omitting ad-
jectives before nouns is possible. Once associa-
tions are constructed, we mark tokens in x and c

that were not part of any association, and extract

deletion features for their lemmas and POS tags.
Thus, we learn that deleting pronouns is accept-
able, while deleting nouns is not.

To summarize, the association model links
phrases of two utterances in multiple overlapping
ways. During training, the model learns which
associations are characteristic of paraphrases and
which are not.

5.2 Vector space model

The association model relies on having a good set
of candidate associations, but mining associations
suffers from coverage issues. We now introduce
a vector space (VS) model, which assigns a vec-
tor representation for each utterance, and learns a
scoring function that ranks paraphrase candidates.

We start by constructing vector representations
of words. We run the WORD2VEC tool (Mikolov et
al., 2013) on lower-cased Wikipedia text (1.59 bil-
lion tokens), using the CBOW model with a win-
dow of 5 and hierarchical softmax. We also ex-
periment with publicly released word embeddings
(Huang et al., 2012), which were trained using
both local and global context. Both result in k-
dimensional vectors (k = 50). Next, we construct
a vector v

x

2 Rk for each utterance x by simply
averaging the vectors of all content words (nouns,
verbs, and adjectives) in x.

We can now estimate a paraphrase score for two
utterances x and c via a weighted combination of
the components of the vector representations:

v

>
x

Wv

c

=

kX

i,j=1

w

ij

v

x,i

v

c,j

where W 2 Rk⇥k is a parameter matrix. In terms
of our earlier notation, we have ✓vs = vec(W ) and
�vs(x, c) = vec(v

x

v

>
c

), where vec(·) unrolls a ma-
trix into a vector. In Section 6, we experiment with
W equal to the identity matrix, constraining W to
be diagonal, and learning a full W matrix.

The VS model can identify correct paraphrases
in cases where it is hard to directly associate
phrases from x and c. For example, the answer
to “Where is made Kia car?” (from WEBQUES-
TIONS), is given by the canonical utterance “What
city is Kia motors a headquarters of?”. The as-
sociation model does not associate “made” and
“headquarters”, but the VS model is able to de-
termine that these utterances are semantically re-
lated. In other cases, the VS model cannot distin-
guish correct paraphrases from incorrect ones. For

Vector space model 
• Association model has problems with the coverage 
• Example where the association fails but vector space model works 

‣ “made” and “headquarter” in “Where is made Kia car?” and “What city is Kia motors a headquarter of 
• Represent every utterance    with a vector       that is average of word2vec words 
• The score is an embedding of both utterances
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phrases of two utterances in multiple overlapping
ways. During training, the model learns which
associations are characteristic of paraphrases and
which are not.

5.2 Vector space model

The association model relies on having a good set
of candidate associations, but mining associations
suffers from coverage issues. We now introduce
a vector space (VS) model, which assigns a vec-
tor representation for each utterance, and learns a
scoring function that ranks paraphrase candidates.

We start by constructing vector representations
of words. We run the WORD2VEC tool (Mikolov et
al., 2013) on lower-cased Wikipedia text (1.59 bil-
lion tokens), using the CBOW model with a win-
dow of 5 and hierarchical softmax. We also ex-
periment with publicly released word embeddings
(Huang et al., 2012), which were trained using
both local and global context. Both result in k-
dimensional vectors (k = 50). Next, we construct
a vector v

x

2 Rk for each utterance x by simply
averaging the vectors of all content words (nouns,
verbs, and adjectives) in x.

We can now estimate a paraphrase score for two
utterances x and c via a weighted combination of
the components of the vector representations:
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), where vec(·) unrolls a ma-
trix into a vector. In Section 6, we experiment with
W equal to the identity matrix, constraining W to
be diagonal, and learning a full W matrix.

The VS model can identify correct paraphrases
in cases where it is hard to directly associate
phrases from x and c. For example, the answer
to “Where is made Kia car?” (from WEBQUES-
TIONS), is given by the canonical utterance “What
city is Kia motors a headquarters of?”. The as-
sociation model does not associate “made” and
“headquarters”, but the VS model is able to de-
termine that these utterances are semantically re-
lated. In other cases, the VS model cannot distin-
guish correct paraphrases from incorrect ones. For
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corpora, containing 18 million pairs of question
paraphrases from wikianswers.com, which
were tagged as having the same meaning by users.
PARALEX is suitable for our needs since it fo-
cuses on question paraphrases. For example, the
phrase “do for a living” occurs mostly in ques-
tions, and we can extract associations for this
phrase from PARALEX. Paraphrase pairs in PAR-
ALEX are word-aligned using standard machine
translation methods. We use the word alignments
to construct a phrase table by applying the con-
sistent phrase pair heuristic (Och and Ney, 2004)
to all 5-grams. This results in a phrase table with
approximately 1.3 million phrase pairs. We let A
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associations the set B (represented implicitly),
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Our model goes over all possible spans of x
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(e.g., “play” and “the”), but as illustrated in Fig-
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set of features. Note that unlike standard para-
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features, we obtain soft syntactic rules, e.g., the
feature “JJ N ^ N” indicates that omitting ad-
jectives before nouns is possible. Once associa-
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ways. During training, the model learns which
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The association model relies on having a good set
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suffers from coverage issues. We now introduce
a vector space (VS) model, which assigns a vec-
tor representation for each utterance, and learns a
scoring function that ranks paraphrase candidates.

We start by constructing vector representations
of words. We run the WORD2VEC tool (Mikolov et
al., 2013) on lower-cased Wikipedia text (1.59 bil-
lion tokens), using the CBOW model with a win-
dow of 5 and hierarchical softmax. We also ex-
periment with publicly released word embeddings
(Huang et al., 2012), which were trained using
both local and global context. Both result in k-
dimensional vectors (k = 50). Next, we construct
a vector v
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The VS model can identify correct paraphrases
in cases where it is hard to directly associate
phrases from x and c. For example, the answer
to “Where is made Kia car?” (from WEBQUES-
TIONS), is given by the canonical utterance “What
city is Kia motors a headquarters of?”. The as-
sociation model does not associate “made” and
“headquarters”, but the VS model is able to de-
termine that these utterances are semantically re-
lated. In other cases, the VS model cannot distin-
guish correct paraphrases from incorrect ones. For
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Dataset # examples # word types

FREE917 917 2,036
WEBQUESTIONS 5,810 4,525

Table 4: Statistics on WEBQUESTIONS and FREE917.

example, the association model identifies that the
paraphrase for “What type of music did Richard
Wagner Play?” is “What is the musical genres
of Richard Wagner?”, by relating phrases such as
“type of music” and “musical genres”. The VS
model ranks the canonical utterance “What com-
position has Richard Wagner as lyricist?” higher,
as this utterance is also in the music domain. Thus,
we combine the two models to benefit from their
complementary nature.

In summary, while the association model aligns
particular phrases to one another, the vector space
model provides a soft vector-based representation
for utterances.

6 Empirical evaluation

In this section, we evaluate our system on WE-
BQUESTIONS and FREE917. After describing the
setup (Section 6.1), we present our main empirical
results and analyze the components of the system
(Section 6.2).

6.1 Setup

We use the WEBQUESTIONS dataset (Berant et
al., 2013), which contains 5,810 question-answer
pairs. This dataset was created by crawling
questions through the Google Suggest API, and
then obtaining answers using Amazon Mechani-
cal Turk. We use the original train-test split, and
divide the training set into 3 random 80%–20%
splits for development. This dataset is character-
ized by questions that are commonly asked on the
web (and are not necessarily grammatical), such
as “What character did Natalie Portman play in
Star Wars?” and “What kind of money to take to
Bahamas?”.

The FREE917 dataset contains 917 questions,
authored by two annotators and annotated with
logical forms. This dataset contains questions on
rarer topics (for example, “What is the engine
in a 2010 Ferrari California?” and “What was
the cover price of the X-men Issue 1?”), but the
phrasing of questions tends to be more rigid com-
pared to WEBQUESTIONS. Table 4 provides some
statistics on the two datasets. Following Cai and
Yates (2013), we hold out 30% of the data for the

final test, and perform 3 random 80%-20% splits
of the training set for development. Since we train
from question-answer pairs, we collect answers by
executing the gold logical forms against Freebase.

We execute �-DCS queries by converting them
into SPARQL and executing them against a copy
of Freebase using the Virtuoso database engine.
We evaluate our system with accuracy, that is, the
proportion of questions we answer correctly. We
run all questions through the Stanford CoreNLP
pipeline (Toutanova and Manning, 2003; Finkel et
al., 2005; Klein and Manning, 2003).

We tuned the L1 regularization strength, devel-
oped features, and ran analysis experiments on the
development set (averaging across random splits).
On WEBQUESTIONS, without L1 regularization,
the number of non-zero features was 360K; L1

regularization brings it down to 17K.

6.2 Results

We compare our system to Cai and Yates (2013)
(CY13), Berant et al. (2013) (BCFL13), and
Kwiatkowski et al. (2013) (KCAZ13). For
BCFL13, we obtained results using the SEMPRE
package2 and running Berant et al. (2013)’s sys-
tem on the datasets.

Table 5 presents results on the test set. We
achieve a substantial relative improvement of 12%
in accuracy on WEBQUESTIONS, and match the
best results on FREE917. Interestingly, our system
gets an oracle accuracy of 63% on WEBQUES-
TIONS compared to 48% obtained by BCFL13,
where the oracle accuracy is the fraction of ques-
tions for which at least one logical form in the
candidate set produced by the system is correct.
This demonstrates that our method for construct-
ing candidate logical forms is reasonable. To fur-
ther examine this, we ran BCFL13 on the devel-
opment set, allowing it to use only predicates from
logical forms suggested by our logical form con-
struction step. This improved oracle accuracy on
the development set to 64.5%, but accuracy was
32.2%. This shows that the improvement in accu-
racy should not be attributed only to better logical
form generation, but also to the paraphrase model.

We now perform more extensive analysis of our
system’s components and compare it to various
baselines.

Component ablation We ablate the association
model, the VS model, and the entire paraphrase

2http://www-nlp.stanford.edu/software/sempre/

•WebQuestions - a large-scale dataset with question answer pairs 
•Google Suggest API is used to build a set of questions 
•Examples: 

•What character did Natalie Portman play in Star Wars? 
•What kind of money to take to Bahamas? 
•What did Edward Jenner do for living?

FREE917 WEBQUESTIONS
CY13 59.0 –
BCFL13 62.0 35.7
KCAZ13 68.0 –
This work 68.5 39.9

Table 5: Results on the test set.

FREE917 WEBQUESTIONS
Our system 73.9 41.2

–VSM 71.0 40.5
–ASSOCIATION 52.7 35.3
–PARAPHRASE 31.8 21.3
SIMPLEGEN 73.4 40.4
Full matrix 52.7 35.3
Diagonal 50.4 30.6
Identity 50.7 30.4
JACCARD 69.7 31.3
EDIT 40.8 24.8
WDDC06 71.0 29.8

Table 6: Results for ablations and baselines on develop-
ment set.

model (using only logical form features). Table 5
shows that our full system obtains highest accu-
racy, and that removing the association model re-
sults in a much larger degradation compared to re-
moving the VS model.

Utterance generation Our system generates
relatively natural utterances from logical forms us-
ing simple rules based on Freebase descriptions
(Section 4). We now consider simply concate-
nating Freebase descriptions. For example, the
logical form R[PlaceOfBirth].ElvisPresley

would generate the utterance “What location Elvis
Presley place of birth?”. Row SIMPLEGEN in Ta-
ble 6 demonstrates that we still get good results in
this setup. This is expected given that our para-
phrase models are not sensitive to the syntactic
structure of the generated utterance.

VS model Our system learns parameters for a
full W matrix. We now examine results when
learning parameters for a full matrix W , a diago-
nal matrix W , and when setting W to be the iden-
tity matrix. Table 6 (third section) illustrates that
learning a full matrix substantially improves accu-
racy. Figure 4 gives an example for a correct para-
phrase pair, where the full matrix model boosts
the overall model score. Note that the full ma-
trix assigns a high score for the phrases “official
language” and “speak” compared to the simpler
models, but other pairs are less interpretable.

Baselines We also compared our system to the
following implemented baselines:

Full do people czech republic speak

o�cal 0.7 8.09 15.34 21.62 24.44

language 3.86 -3.13 7.81 2.58 14.74

czech 0.67 16.55 2.76

republic -8.71 12.47 -10.75

Diagonal do people czech republic speak

o�cal 2.31 -0.72 1.88 0.27 -0.49

language 0.27 4.72 11.51 12.33 11

czech 1.4 8.13 5.21

republic -0.16 6.72 9.69

Identity do people czech republic speak

o�cal 2.26 -1.41 0.89 0.07 -0.58

language 0.62 4.19 11.91 10.78 12.7

czech 2.88 7.31 5.42

republic -1.82 4.34 9.44

Figure 4: Values of the paraphrase score v

>
xi
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ci0 for all
content word tokens x

i

and c

i

0 , where W is an arbitrary full
matrix, a diagonal matrix, or the identity matrix. We omit
scores for the words “czech” and “republic” since they ap-
pear in all canonical utterances for this example.

• JACCARD: We compute the Jaccard score
between the tokens of x and c and define
�pr(x, c) to be this single feature.

• EDIT: We compute the token edit distance
between x and c and define �pr(x, c) to be
this single feature.

• WDDC06: We re-implement 13 features
from Wan et al. (2006), who obtained close to
state-of-the-art performance on the Microsoft
Research paraphrase corpus.3

Table 6 demonstrates that we improve perfor-
mance over all baselines. Interestingly, JACCARD
and WDDC06 obtain reasonable performance
on FREE917 but perform much worse on WE-
BQUESTIONS. We surmise this is because ques-
tions in FREE917 were generated by annotators
prompted by Freebase facts, whereas questions
in WEBQUESTIONS originated independently of
Freebase. Thus, word choice in FREE917 is of-
ten close to the generated Freebase descriptions,
allowing simple baselines to perform well.

Error analysis We sampled examples from the
development set to examine the main reasons
PARASEMPRE makes errors. We notice that in
many cases the paraphrase model can be further
improved. For example, PARASEMPRE suggests

3We implement all features that do not require depen-
dency parsing.

Ablation studies on the validation set
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Table 6 demonstrates that we improve perfor-
mance over all baselines. Interestingly, JACCARD
and WDDC06 obtain reasonable performance
on FREE917 but perform much worse on WE-
BQUESTIONS. We surmise this is because ques-
tions in FREE917 were generated by annotators
prompted by Freebase facts, whereas questions
in WEBQUESTIONS originated independently of
Freebase. Thus, word choice in FREE917 is of-
ten close to the generated Freebase descriptions,
allowing simple baselines to perform well.

Error analysis We sampled examples from the
development set to examine the main reasons
PARASEMPRE makes errors. We notice that in
many cases the paraphrase model can be further
improved. For example, PARASEMPRE suggests

3We implement all features that do not require depen-
dency parsing.

Results on the test set

Conclusions
• Paraphrase model is important 
• Removing ASSOCIATION results in  

larger degradation compared to VSM 
• Full matrix for VSM works the best
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Abstract view on the semantic parser!

Grounding and question-answering based on real-world images

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the
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Abstract

A central challenge in semantic parsing is
handling the myriad ways in which knowl-
edge base predicates can be expressed.
Traditionally, semantic parsers are trained
primarily from text paired with knowledge
base information. Our goal is to exploit
the much larger amounts of raw text not
tied to any knowledge base. In this pa-
per, we turn semantic parsing on its head.
Given an input utterance, we first use a
simple method to deterministically gener-
ate a set of candidate logical forms with
a canonical realization in natural language
for each. Then, we use a paraphrase model
to choose the realization that best para-
phrases the input, and output the corre-
sponding logical form. We present two
simple paraphrase models, an association
model and a vector space model, and train
them jointly from question-answer pairs.
Our system PARASEMPRE improves state-
of-the-art accuracies on two recently re-
leased question-answering datasets.

1 Introduction

We consider the semantic parsing problem of map-
ping natural language utterances into logical forms
to be executed on a knowledge base (KB) (Zelle
and Mooney, 1996; Zettlemoyer and Collins,
2005; Wong and Mooney, 2007; Kwiatkowski
et al., 2010). Scaling semantic parsers to large
knowledge bases has attracted substantial atten-
tion recently (Cai and Yates, 2013; Berant et al.,
2013; Kwiatkowski et al., 2013), since it drives
applications such as question answering (QA) and
information extraction (IE).

Semantic parsers need to somehow associate
natural language phrases with logical predicates,
e.g., they must learn that the constructions “What

What party did Clay establish?

paraphrase model

What political party founded by Henry Clay?
...

What event involved the people Henry Clay?

Type.PoliticalParty u Founder.HenryClay ... Type.Event u Involved.HenryClay

Whig Party

Figure 1: Semantic parsing via paraphrasing: For each
candidate logical form (in red), we generate canonical utter-
ances (in purple). The model is trained to paraphrase the in-
put utterance (in green) into the canonical utterances associ-
ated with the correct denotation (in blue).

does X do for a living?”, “What is X’s profes-
sion?”, and “Who is X?”, should all map to the
logical predicate Profession. To learn these map-
pings, traditional semantic parsers use data which
pairs natural language with the KB. However, this
leaves untapped a vast amount of text not related
to the KB. For instance, the utterances “Where is
ACL in 2014?” and “What is the location of ACL
2014?” cannot be used in traditional semantic
parsing methods, since the KB does not contain
an entity ACL2014, but this pair clearly contains
valuable linguistic information. As another refer-
ence point, out of 500,000 relations extracted by
the ReVerb Open IE system (Fader et al., 2011),
only about 10,000 can be aligned to Freebase (Be-
rant et al., 2013).

In this paper, we present a novel approach for
semantic parsing based on paraphrasing that can
exploit large amounts of text not covered by the
KB (Figure 1). Our approach targets factoid ques-
tions with a modest amount of compositionality.
Given an input utterance, we first use a simple de-
terministic procedure to construct a manageable
set of candidate logical forms (ideally, we would
generate canonical utterances for all possible logi-
cal forms, but this is intractable). Next, we heuris-
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A Joint Model of Language and Perception for Grounded Attribute Learning

We evaluate this approach on data gathered on Ama-
zon Mechanical Turk, in which people describe sets of
objects on a table. Experiments demonstrate that the
joint learning approach can e↵ectively extend the set
of grounded concepts in an incomplete model initial-
ized with supervised training on a small dataset. This
provides a simple mechanism for learning vocabulary
in a physical environment.

Figure 1. An example of an RGB-D object identification
scene. Columns on the right show example segments, iden-
tified as positive (far right) and negative (center).

2. Overview of the Approach

Problem We wish to learn a joint language and per-
ception model for the object selection task. The goal
is to automatically map a natural language sentence
x and a set of scene objects O to the subset G ✓ O
of objects described by x. The left panel of Fig. 1
shows an example scene. Here, O is the set of objects
present in this scene. The individual objects o 2 O are
extracted from the scene via segmentation (the right
panel of Fig. 1 shows example segments). Given the
sentence x =“Here are the yellow ones,” the goal is to
select the five yellow objects for the named set G.

Model Components Given a sentence and seg-
mented scene objects, we learn a distribution P (G |
x, O) over the selected set. Our approach combines
recent models of language and vision, including:

(1) A semantic parsing model that defines P (z|x), a
distribution over logical meaning representations z for
each sentence x. In our running example, the desired
representation z = �x.color(x, yellow) is a lambda-
calculus expression that defines a set of objects that
are yellow. For this task, we build on an existing se-
mantic parsing model (Kwiatkowski et al., 2011).

(2) A set of visual attribute classifiers C, where each
classifier c 2 C defines a distribution P (c = true|o)
of the classifier returning true for each possible object
o 2 O in the scene. For example, there would be a
unique classifier c 2 C for each possible color or shape
an object can have. We use logistic regression to train

classifiers on color and shape features extracted from
object segments recorded using a Kinect depth camera.

Joint Model We combine these language and vision
models in two ways. First, we introduce an explicit
model of alignment between the logical constants in
the logical form z and classifiers in the set C. This
alignment would, for example, enable us to learn that
the logical constant yellow should be paired with a
classifier c 2 C that fires on yellow objects.

Next, we introduce an execution model that allows
us to determine what scene objects in O would be
selected by a logical expression z, given the classi-
fiers in C. This allows us to, for example, execute
�x.color(x, green)^shape(x, triangle) by testing all of
the objects with the appropriate classifiers (for green
and triangle), then selecting objects on which both
classifiers return true. This execution model includes
uncertainty from the semantic parser P (z|x), classifier
confidences P (c = true|o), and a deterministic ground-
truth constraint that encodes what objects are actually
intended to be selected. Full details are in Sec. 5.

Model Learning We present an approach that
learns the meaning of new words from a dataset D =
{(x

i

, O
i

, G
i

) | i = 1 . . . n}, where each example i con-
tains a sentence x

i

, the objects O
i

, and the selected
set G

i

. This setup is an abstraction of the situa-
tion where a teacher mentions x

i

while pointing to
the objects G

i

✓ O
i

she describes. As described in
detail in Sec. 6, learning proceeds in an online, EM-
like fashion by repeatedly estimating expectations over
the latent logical forms z

i

and the outputs of the clas-
sifiers c 2 C, then using these expectations to update
the parameters of the component models for language
P (z|x) and visual classification P (c|o). To bootstrap
the learning approach, we first train a limited language
and perception system in a fully supervised way: in
this stage, each example additionally contains labeled
logical meaning expressions and classifier outputs, as
described in Sec. 6.

3. Related Work

To the best of our knowledge, this paper presents the
first approach for jointly learning visual classifiers and
semantic parsers, to produce rich, compositional mod-
els that span directly from sensors to meaning. How-
ever, there is significant related work on the model
components, and on grounded learning in general.

Vision Current state-of-the-art object recognition
systems (Felzenszwalb et al., 2009; Yang et al., 2009)
are based on local image descriptors, for example
SIFT over images (Lowe, 2004) and Spin Images over

C. Matuszek, et. al. “A Joint Model of 
Language and Perception Grounded 
Attribute Learning” ICML 2012

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the
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J. Krishnamurthy, et. al. “Jointly Learning to Parse and Perceive: Connecting Natural Language to 
the Physical World” TACL 2013

mug in front of the monitor;mug1;2;(lambda $x (exists 
$y (and (mug $x) (front-rel $x $y) (monitor $y))))

M. Malinowski and M. Fritz “A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input”, 
NIPS 2014 (to appear)

QA: (what is beneath the candle 
holder,  decorative plate)!
!
QA: (what is in front of the wall 
divider?, cabinet)

QA: (what is in front of the 
curtain behind the armchair?, 
guitar)  
!
QA: (what is in front of the 
curtain?, guitar)!

QA: (What is behind the table?, 
window)!
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