
Mateusz Malinowski

Visual Turing Test:
defining a challenge

M. Malinowski | Question Answering 2

Visual Turing Test challenge
!

!

!

!

!

!

!

!

• Ask about the content of the image
‣ How many sofas?
‣ Where is the lamp?
‣ What is behind the largest table?
‣ What is the color of the walls?

3
on the table, close to tv

tv
purple

The task involves

Object detection648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#2000

CVPR
#2000

CVPR 2014 Submission #2000. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Estimated spatial filters
Our dataset of extended relations Basic [Tian’12]

above across from behind below in in front inside left right on under above below

Table 1: Visualization of estimated spatial filters. Compositional refers to the spatial filters estimated from ground truth object detections.
Structured refers to the spatial filters estimated from trained detectors.

architecture is capable of working with little supervision as
spatial filters are either learnt or estimated from data. More-
over, we have achieved results on par with the state-of-the-
art on the structured queries under weaker design assump-
tions. Latter enables easy extension to dataset with new
spatial prepositions as the representation of new relations
is based on data. Finally, we have shown that our architec-
ture is capable of learning on more challenging structured
queries.

In the closest future, we envision bigger progress on
the image retrieval task with architectures capable of work-
ing with richer subset of natural languages. We believe,
our architecture makes a significant step towards this direc-
tion. Therefore we will make our source code together with
dataset publicly available at time of publication.

References
[1] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,

G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.
Theano: a CPU and GPU math expression compiler. In Pro-
ceedings of the Python for Scientific Computing Conference
(SciPy), 2010.

[2] Çaglar Gülçehre and Y. Bengio. Knowledge matters: Impor-
tance of prior information for optimization. CoRR, 2013.

[3] M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Ex-
ploiting hierarchical context on a large database of object
categories. In IEEE Conference on Computer VIsion and
Pattern Recognition (CVPR), 2010.

[4] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vin-
cent, and S. Bengio. Why does unsupervised pre-training
help deep learning? JMLR, 11:625–660, 2010.

[5] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young,
C. Rashtchian, J. Hockenmaier, and D. Forsyth. Every pic-
ture tells a story: Generating sentences from images. In
ECCV, pages 15–29. 2010.

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(9):1627–1645, 2010.

[7] D. Klein and C. D. Manning. Accurate unlexicalized parsing.
In ACL, pages 423–430, 2003.

[8] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In NIPS,
pages 1106–1114, 2012.

[9] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg,
and T. L. Berg. Baby talk: Understanding and generat-
ing simple image descriptions. In CVPR, pages 1601–1608,
2011.

[10] T. Lan, W. Yang, Y. Wang, and G. Mori. Image retrieval with
structured object queries using latent ranking svm. In ECCV,
pages 129–142. 2012.

[11] Y. LeCun, L. Bottou, G. Orr, and K. Müller. Efficient back-
prop. Neural networks: Tricks of the trade, pages 546–546,
1998.

[12] L.-J. Li, H. Su, E. P. Xing, and L. Fei-Fei. Object bank: A
high-level image representation for scene classification and
semantic feature sparsification. NIPS, 2010.

[13] P. Liang, M. I. Jordan, and D. Klein. Learning dependency-
based compositional semantics. In ACL, pages 590–599,
2011.

[14] C. D. Manning and H. Schütze. Foundations of statistical
natural language processing. MIT press, 1999.

[15] C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and
D. Fox. A joint model of language and perception for
grounded attribute learning. In ICML, 2013.

[16] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spa-
tial matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2007.

[17] B. Siddiquie, R. S. Feris, and L. S. Davis. Image ranking
and retrieval based on multi-attribute queries. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, 2011.

[18] G. Socher, G. Sagerer, and P. Perona. Bayesian reasoning
on qualitative descriptions from images and speech. Image
Vision Computing, 2000.

[19] R. Socher, C. C. Lin, A. Y. Ng, and C. D. Manning. Pars-
ing natural scenes and natural language with recursive neural
networks. In ICML, 2011.

[20] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the
importance of initialization and momentum in deep learning.

[21] S. Tellex, T. Kollar, G. Shaw, N. Roy, and D. Roy. Grounding
spatial language for video search. In ICMI, 2010.

[22] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and composing robust features with denoising au-
toencoders. In ICML, pages 1096–1103, 2008.

7

Spatial reasoning

Natural language understanding

M. Malinowski | Grounding 3

Roadmap

Learning Dependency-Based
Compositional Semantics  
(P. Liang et. al. ACL 2011)

?

Learning Dependency-Based Compositional Semantics

Percy Liang

UC Berkeley
pliang@cs.berkeley.edu

Michael I. Jordan

UC Berkeley
jordan@cs.berkeley.edu

Dan Klein

UC Berkeley
klein@cs.berkeley.edu

Abstract

Compositional question answering begins by
mapping questions to logical forms, but train-
ing a semantic parser to perform this mapping
typically requires the costly annotation of the
target logical forms. In this paper, we learn
to map questions to answers via latent log-
ical forms, which are induced automatically
from question-answer pairs. In tackling this
challenging learning problem, we introduce a
new semantic representation which highlights
a parallel between dependency syntax and effi-
cient evaluation of logical forms. On two stan-
dard semantic parsing benchmarks (GEO and
JOBS), our system obtains the highest pub-
lished accuracies, despite requiring no anno-
tated logical forms.

1 Introduction

What is the total population of the ten largest cap-
itals in the US? Answering these types of complex
questions compositionally involves first mapping the
questions into logical forms (semantic parsing). Su-
pervised semantic parsers (Zelle and Mooney, 1996;
Tang and Mooney, 2001; Ge and Mooney, 2005;
Zettlemoyer and Collins, 2005; Kate and Mooney,
2007; Zettlemoyer and Collins, 2007; Wong and
Mooney, 2007; Kwiatkowski et al., 2010) rely on
manual annotation of logical forms, which is expen-
sive. On the other hand, existing unsupervised se-
mantic parsers (Poon and Domingos, 2009) do not
handle deeper linguistic phenomena such as quan-
tification, negation, and superlatives.

As in Clarke et al. (2010), we obviate the need
for annotated logical forms by considering the end-
to-end problem of mapping questions to answers.
However, we still model the logical form (now as a
latent variable) to capture the complexities of lan-
guage. Figure 1 shows our probabilistic model:

(parameters) (world)

✓ w

x z y

(question) (logical form) (answer)

state with the
largest area

x1x1

1

1

cc

argmax

area

state

⇤⇤ Alaska

z ⇠ p✓(z | x)

y = JzKw

Semantic Parsing Evaluation

Figure 1: Our probabilistic model: a question x is
mapped to a latent logical form z, which is then evaluated
with respect to a world w (database of facts), producing
an answer y. We represent logical forms z as labeled
trees, induced automatically from (x, y) pairs.

We want to induce latent logical forms z (and pa-
rameters ✓) given only question-answer pairs (x, y),
which is much cheaper to obtain than (x, z) pairs.

The core problem that arises in this setting is pro-
gram induction: finding a logical form z (over an
exponentially large space of possibilities) that pro-
duces the target answer y. Unlike standard semantic
parsing, our end goal is only to generate the correct
y, so we are free to choose the representation for z.
Which one should we use?

The dominant paradigm in compositional se-
mantics is Montague semantics, which constructs
lambda calculus forms in a bottom-up manner. CCG
is one instantiation (Steedman, 2000), which is used
by many semantic parsers, e.g., Zettlemoyer and
Collins (2005). However, the logical forms there
can become quite complex, and in the context of
program induction, this would lead to an unwieldy
search space. At the same time, representations such
as FunQL (Kate et al., 2005), which was used in

Jointly Learning to Parse and Perceive:  
Connecting Natural Language to the

Physical World.!
(J. Krishnamurthy et. al. TACL 2013)

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

Some ideas

M. Malinowski | Grounding 4

Two dimensions of language understanding
Pr

ec
isi

on

Recall

Old AI

Google

Our dream

Percy’s work

M. Malinowski | Grounding 5

Semantic parser
The Big Picture

What is the most populous city in California?

Database System

Los Angeles

Expensive: logical forms Cheap: answers

[Zelle & Mooney, 1996; Zettlemoyer & Collins, 2005] [Clarke et al., 2010]

[Wong & Mooney, 2007; Kwiatkowski et al., 2010] [this work]

What is the most populous city in California?
) argmax(�x.city(x) ^ loc(x, CA),�x.pop.(x))
How many states border Oregon?
) count(�x.state(x) ^ border(x, OR)
· · ·

What is the most populous city in California?
) Los Angeles
How many states border Oregon?
) 3
· · ·

2

M. Malinowski | Grounding 6

The probabilistic framework
Plan

x

capital of

California?

parameters

✓

z

1

2

1

1

CA

capital

⇤⇤

database

w

y

Sacramento

• What’s possible? z 2 ?

•
What’s probable? p(z | x, ✓)

• Learning ✓ to data

18

Learning

Objective:

p(y | z, w) p(z | x, ✓)
Interpretation Semantic parsing

19

Interpretation

Semantic parsing

Learning

Objective:

p(y | z, w) p(z | x, ✓)
Interpretation Semantic parsing

19

Learning

Objective:

max✓
P

z p(y | z, w) p(z | x, ✓)
Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓

(0, 0, . . . , 0)

enumerate/score DCS trees

19

Objective Learning

Objective:

max✓
P

z p(y | z, w) p(z | x, ✓)
Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓ k-best list

(0.2,�1.3, . . . , 0.7)

enumerate/score DCS trees

numerical optimization (L-BFGS)

tree1

tree2

tree3

tree4

tree5

19

Learning

M. Malinowski | Grounding 7

Challenges of the semantic parsing
Challenges

Computational: how to e�ciently search exponential space?

What is the most populous city in California?

�x.city(x) ^ loc(x, CA)

Los Angeles

3

Challenges

Computational: how to e�ciently search exponential space?

What is the most populous city in California?

�x.state(x) ^ border(x, CA)

Los Angeles

3

Challenges

Computational: how to e�ciently search exponential space?

What is the most populous city in California?

argmax(�x.city(x) ^ loc(x, CA),�x.population(x))

Los Angeles

3

M. Malinowski | Grounding 8

Challenges of the semantic parsing

Words to Predicates (Lexical Semantics)

city city

state state

river river

argmax population population CA

What is the most populous city in CA ?

Lexical Triggers:

1. String match CA) CA

2. Function words (20 words)

most) argmax

3. Nouns/adjectives

city) city state river population

13

M. Malinowski | Grounding 9

Dependency-based compositional semantics
Solution: Mark-Execute

most populous city in California

Mark at syntactic scope

x1x1

1

1

1

1

cc

argmax

population

2

1

CA

loc

city

⇤⇤

Superlatives

9

M. Malinowski | Grounding 10

Results Experiment 2

On Geo, 600 training examples, 280 test examples

System Description Lexicon Logical forms

zc05 CCG [Zettlemoyer & Collins, 2005]

zc07 relaxed CCG [Zettlemoyer & Collins, 2007]

kzgs10 CCG w/unification [Kwiatkowski et al., 2010]

dcs our system

dcs

+ our system

zc05

79.3%

zc07

86.1%

kzgs10

88.9%

dcs

88.6%

dcs

+

91.1%

75

80

85

90

95

100

t
e
s
t
a
c
c
u
r
a
c
y

23

M. Malinowski | Grounding 11

Roadmap

Learning Dependency-Based
Compositional Semantics  
(P. Liang et. al. ACL 2011)

?

Learning Dependency-Based Compositional Semantics

Percy Liang

UC Berkeley
pliang@cs.berkeley.edu

Michael I. Jordan

UC Berkeley
jordan@cs.berkeley.edu

Dan Klein

UC Berkeley
klein@cs.berkeley.edu

Abstract

Compositional question answering begins by
mapping questions to logical forms, but train-
ing a semantic parser to perform this mapping
typically requires the costly annotation of the
target logical forms. In this paper, we learn
to map questions to answers via latent log-
ical forms, which are induced automatically
from question-answer pairs. In tackling this
challenging learning problem, we introduce a
new semantic representation which highlights
a parallel between dependency syntax and effi-
cient evaluation of logical forms. On two stan-
dard semantic parsing benchmarks (GEO and
JOBS), our system obtains the highest pub-
lished accuracies, despite requiring no anno-
tated logical forms.

1 Introduction

What is the total population of the ten largest cap-
itals in the US? Answering these types of complex
questions compositionally involves first mapping the
questions into logical forms (semantic parsing). Su-
pervised semantic parsers (Zelle and Mooney, 1996;
Tang and Mooney, 2001; Ge and Mooney, 2005;
Zettlemoyer and Collins, 2005; Kate and Mooney,
2007; Zettlemoyer and Collins, 2007; Wong and
Mooney, 2007; Kwiatkowski et al., 2010) rely on
manual annotation of logical forms, which is expen-
sive. On the other hand, existing unsupervised se-
mantic parsers (Poon and Domingos, 2009) do not
handle deeper linguistic phenomena such as quan-
tification, negation, and superlatives.

As in Clarke et al. (2010), we obviate the need
for annotated logical forms by considering the end-
to-end problem of mapping questions to answers.
However, we still model the logical form (now as a
latent variable) to capture the complexities of lan-
guage. Figure 1 shows our probabilistic model:

(parameters) (world)

✓ w

x z y

(question) (logical form) (answer)

state with the
largest area

x1x1

1

1

cc

argmax

area

state

⇤⇤ Alaska

z ⇠ p✓(z | x)

y = JzKw

Semantic Parsing Evaluation

Figure 1: Our probabilistic model: a question x is
mapped to a latent logical form z, which is then evaluated
with respect to a world w (database of facts), producing
an answer y. We represent logical forms z as labeled
trees, induced automatically from (x, y) pairs.

We want to induce latent logical forms z (and pa-
rameters ✓) given only question-answer pairs (x, y),
which is much cheaper to obtain than (x, z) pairs.

The core problem that arises in this setting is pro-
gram induction: finding a logical form z (over an
exponentially large space of possibilities) that pro-
duces the target answer y. Unlike standard semantic
parsing, our end goal is only to generate the correct
y, so we are free to choose the representation for z.
Which one should we use?

The dominant paradigm in compositional se-
mantics is Montague semantics, which constructs
lambda calculus forms in a bottom-up manner. CCG
is one instantiation (Steedman, 2000), which is used
by many semantic parsers, e.g., Zettlemoyer and
Collins (2005). However, the logical forms there
can become quite complex, and in the context of
program induction, this would lead to an unwieldy
search space. At the same time, representations such
as FunQL (Kate et al., 2005), which was used in

Jointly Learning to Parse and Perceive:  
Connecting Natural Language to the

Physical World.!
(J. Krishnamurthy et. al. TACL 2013)

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

Some ideas

M. Malinowski | Grounding 12

Grounding problem

(a) An environment containing 4
objects (image segments).

Environment:

(image on left)

Knowledge Base

Query:
“things to the right
of the blue mug”

Semantic Parse

Grounding: {(2, 1), (3, 1)}
Denotation: {2, 3}

(b) LSP predicting the environmental referents of
a natural language query.

Language Denotation

The mugs {1, 3}
The objects on the table {1, 2, 3}
There is an LCD monitor {2}
Is the blue mug right {}of the monitor?
The monitor is behind {2}the blue cup.

(c) Training examples for weakly su-
pervised training.

Figure 1: LSP applied to scene understanding. Given an environment containing a set of objects (left), and a
natural language query, LSP produces a semantic parse, logical knowledge base, grounding and denotation
(middle), using only language/denotation pairs (right) for training.

mented image (Figure 1a), and a natural language
query, such as “the things to the right of the blue
mug.” Given these inputs, LSP produces (1) a logi-
cal knowledge base describing objects and relation-
ships in the environment and (2) a semantic parse of
the query capturing its compositional structure. LSP
combines these two outputs to produce the query’s
grounding, which is the set of object referents of the
query’s noun phrases, and its denotation, which is
the query’s answer (Figure 1b).1 Weakly supervised
training estimates parameters for LSP using queries
annotated with their denotations in an environment
(Figure 1c).

This work has two contributions. The first con-
tribution is LSP, which is more expressive than pre-
vious models, representing both one-argument cat-
egories and two-argument relations over sets of ob-
jects in the environment. The second contribution
is a weakly supervised training procedure that esti-
mates LSP’s parameters without annotated semantic
parses, noun phrase/object mappings, or manually-
constructed knowledge bases.

We perform experiments on two different applica-
tions. The first application is scene understanding,
where LSP grounds descriptions of images in im-
age segments. The second application is geograph-
ical question answering, where LSP learns to an-
swer questions about locations, represented as poly-
gons on a map. In geographical question answering,

1We treat declarative sentences as if they were queries about
their subject, e.g., the denotation of “the mug is on the table” is
the set of mugs on tables. Typically, the denotation of a sentence
is either true or false; our treatment is strictly more general, as
a sentence’s denotation is nonempty if and only if the sentence
is true.

LSP correctly answers 34% more questions than the
most comparable state-of-the-art model (Matuszek
et al., 2012). In scene understanding, accuracy sim-
ilarly improves by 16%. Furthermore, weakly su-
pervised training achieves an accuracy within 6% of
that achieved by fully supervised training, while re-
quiring significantly less annotation effort.

2 Prior Work

Logical Semantics with Perception (LSP) is related
to work from planning, natural language processing,
computer vision and robotics. Much of the related
work focuses on interpreting natural language us-
ing a fixed formal representation. Some work con-
structs integrated systems which execute plans in re-
sponse to natural language commands (Winograd,
1970; Hsiao et al., 2003; Roy et al., 2003; Skubic
et al., 2004; MacMahon et al., 2006; Levit and Roy,
2007; Kruijff et al., 2007). These systems parse
natural language to a formal representation which
can be executed using a set of fixed control pro-
grams. Similarly, work on semantic parsing learns
to map natural language to a given formal repre-
sentation. Semantic parsers can be trained using
sentences annotated with their formal representation
(Zelle and Mooney, 1996; Zettlemoyer and Collins,
2005; Kate and Mooney, 2006; Kwiatkowski et al.,
2010) or various less restrictive annotations (Clarke
et al., 2010; Liang et al., 2011; Krishnamurthy and
Mitchell, 2012). Finally, work on grounded lan-
guage acquisition leverages semantic parsing to map
from natural language to a formal representation of
an environment (Kate and Mooney, 2007; Chen and
Mooney, 2008; Shimizu and Haas, 2009; Matuszek

194

The mugs

(a) An environment containing 4
objects (image segments).

Environment:

(image on left)

Knowledge Base

Query:
“things to the right
of the blue mug”

Semantic Parse

Grounding: {(2, 1), (3, 1)}
Denotation: {2, 3}

(b) LSP predicting the environmental referents of
a natural language query.

Language Denotation

The mugs {1, 3}
The objects on the table {1, 2, 3}
There is an LCD monitor {2}
Is the blue mug right {}of the monitor?
The monitor is behind {2}the blue cup.

(c) Training examples for weakly su-
pervised training.

Figure 1: LSP applied to scene understanding. Given an environment containing a set of objects (left), and a
natural language query, LSP produces a semantic parse, logical knowledge base, grounding and denotation
(middle), using only language/denotation pairs (right) for training.

mented image (Figure 1a), and a natural language
query, such as “the things to the right of the blue
mug.” Given these inputs, LSP produces (1) a logi-
cal knowledge base describing objects and relation-
ships in the environment and (2) a semantic parse of
the query capturing its compositional structure. LSP
combines these two outputs to produce the query’s
grounding, which is the set of object referents of the
query’s noun phrases, and its denotation, which is
the query’s answer (Figure 1b).1 Weakly supervised
training estimates parameters for LSP using queries
annotated with their denotations in an environment
(Figure 1c).

This work has two contributions. The first con-
tribution is LSP, which is more expressive than pre-
vious models, representing both one-argument cat-
egories and two-argument relations over sets of ob-
jects in the environment. The second contribution
is a weakly supervised training procedure that esti-
mates LSP’s parameters without annotated semantic
parses, noun phrase/object mappings, or manually-
constructed knowledge bases.

We perform experiments on two different applica-
tions. The first application is scene understanding,
where LSP grounds descriptions of images in im-
age segments. The second application is geograph-
ical question answering, where LSP learns to an-
swer questions about locations, represented as poly-
gons on a map. In geographical question answering,

1We treat declarative sentences as if they were queries about
their subject, e.g., the denotation of “the mug is on the table” is
the set of mugs on tables. Typically, the denotation of a sentence
is either true or false; our treatment is strictly more general, as
a sentence’s denotation is nonempty if and only if the sentence
is true.

LSP correctly answers 34% more questions than the
most comparable state-of-the-art model (Matuszek
et al., 2012). In scene understanding, accuracy sim-
ilarly improves by 16%. Furthermore, weakly su-
pervised training achieves an accuracy within 6% of
that achieved by fully supervised training, while re-
quiring significantly less annotation effort.

2 Prior Work

Logical Semantics with Perception (LSP) is related
to work from planning, natural language processing,
computer vision and robotics. Much of the related
work focuses on interpreting natural language us-
ing a fixed formal representation. Some work con-
structs integrated systems which execute plans in re-
sponse to natural language commands (Winograd,
1970; Hsiao et al., 2003; Roy et al., 2003; Skubic
et al., 2004; MacMahon et al., 2006; Levit and Roy,
2007; Kruijff et al., 2007). These systems parse
natural language to a formal representation which
can be executed using a set of fixed control pro-
grams. Similarly, work on semantic parsing learns
to map natural language to a given formal repre-
sentation. Semantic parsers can be trained using
sentences annotated with their formal representation
(Zelle and Mooney, 1996; Zettlemoyer and Collins,
2005; Kate and Mooney, 2006; Kwiatkowski et al.,
2010) or various less restrictive annotations (Clarke
et al., 2010; Liang et al., 2011; Krishnamurthy and
Mitchell, 2012). Finally, work on grounded lan-
guage acquisition leverages semantic parsing to map
from natural language to a formal representation of
an environment (Kate and Mooney, 2007; Chen and
Mooney, 2008; Shimizu and Haas, 2009; Matuszek

194

(a)Anenvironmentcontaining4
objects(imagesegments).

Environment:

(imageonleft)

KnowledgeBase

Query:
“thingstotheright
ofthebluemug”

SemanticParse

Grounding:{(2,1),(3,1)}
Denotation:{2,3}

(b)LSPpredictingtheenvironmentalreferentsof
anaturallanguagequery.

LanguageDenotation

Themugs{1,3}
Theobjectsonthetable{1,2,3}
ThereisanLCDmonitor{2}
Isthebluemugright{} ofthemonitor?
Themonitorisbehind{2} thebluecup.

(c)Trainingexamplesforweaklysu-
pervisedtraining.

Figure1:LSPappliedtosceneunderstanding.Givenanenvironmentcontainingasetofobjects(left),anda
naturallanguagequery,LSPproducesasemanticparse,logicalknowledgebase,groundinganddenotation
(middle),usingonlylanguage/denotationpairs(right)fortraining.

mentedimage(Figure1a),andanaturallanguage
query,suchas“thethingstotherightoftheblue
mug.”Giventheseinputs,LSPproduces(1)alogi-
calknowledgebasedescribingobjectsandrelation-
shipsintheenvironmentand(2)asemanticparseof
thequerycapturingitscompositionalstructure.LSP
combinesthesetwooutputstoproducethequery’s
grounding,whichisthesetofobjectreferentsofthe
query’snounphrases,anditsdenotation,whichis
thequery’sanswer(Figure1b).1Weaklysupervised
trainingestimatesparametersforLSPusingqueries
annotatedwiththeirdenotationsinanenvironment
(Figure1c).

Thisworkhastwocontributions.Thefirstcon-
tributionisLSP,whichismoreexpressivethanpre-
viousmodels,representingbothone-argumentcat-
egoriesandtwo-argumentrelationsoversetsofob-
jectsintheenvironment.Thesecondcontribution
isaweaklysupervisedtrainingprocedurethatesti-
matesLSP’sparameterswithoutannotatedsemantic
parses,nounphrase/objectmappings,ormanually-
constructedknowledgebases.

Weperformexperimentsontwodifferentapplica-
tions.Thefirstapplicationissceneunderstanding,
whereLSPgroundsdescriptionsofimagesinim-
agesegments.Thesecondapplicationisgeograph-
icalquestionanswering,whereLSPlearnstoan-
swerquestionsaboutlocations,representedaspoly-
gonsonamap.Ingeographicalquestionanswering,

1
Wetreatdeclarativesentencesasiftheywerequeriesabout

theirsubject,e.g.,thedenotationof“themugisonthetable”is
thesetofmugsontables.Typically,thedenotationofasentence
iseithertrueorfalse;ourtreatmentisstrictlymoregeneral,as
asentence’sdenotationisnonemptyifandonlyifthesentence
istrue.

LSPcorrectlyanswers34%morequestionsthanthe
mostcomparablestate-of-the-artmodel(Matuszek
etal.,2012).Insceneunderstanding,accuracysim-
ilarlyimprovesby16%.Furthermore,weaklysu-
pervisedtrainingachievesanaccuracywithin6%of
thatachievedbyfullysupervisedtraining,whilere-
quiringsignificantlylessannotationeffort.

2PriorWork

LogicalSemanticswithPerception(LSP)isrelated
toworkfromplanning,naturallanguageprocessing,
computervisionandrobotics.Muchoftherelated
workfocusesoninterpretingnaturallanguageus-
ingafixedformalrepresentation.Someworkcon-
structsintegratedsystemswhichexecuteplansinre-
sponsetonaturallanguagecommands(Winograd,
1970;Hsiaoetal.,2003;Royetal.,2003;Skubic
etal.,2004;MacMahonetal.,2006;LevitandRoy,
2007;Kruijffetal.,2007).Thesesystemsparse
naturallanguagetoaformalrepresentationwhich
canbeexecutedusingasetoffixedcontrolpro-
grams.Similarly,workonsemanticparsinglearns
tomapnaturallanguagetoagivenformalrepre-
sentation.Semanticparserscanbetrainedusing
sentencesannotatedwiththeirformalrepresentation
(ZelleandMooney,1996;ZettlemoyerandCollins,
2005;KateandMooney,2006;Kwiatkowskietal.,
2010)orvariouslessrestrictiveannotations(Clarke
etal.,2010;Liangetal.,2011;Krishnamurthyand
Mitchell,2012).Finally,workongroundedlan-
guageacquisitionleveragessemanticparsingtomap
fromnaturallanguagetoaformalrepresentationof
anenvironment(KateandMooney,2007;Chenand
Mooney,2008;ShimizuandHaas,2009;Matuszek

194

(a) An environment containing 4
objects (image segments).

Environment:

(image on left)

Knowledge Base

Query:
“things to the right
of the blue mug”

Semantic Parse

Grounding: {(2, 1), (3, 1)}
Denotation: {2, 3}

(b) LSP predicting the environmental referents of
a natural language query.

Language Denotation

The mugs {1, 3}
The objects on the table {1, 2, 3}
There is an LCD monitor {2}
Is the blue mug right {}of the monitor?
The monitor is behind {2}the blue cup.

(c) Training examples for weakly su-
pervised training.

Figure 1: LSP applied to scene understanding. Given an environment containing a set of objects (left), and a
natural language query, LSP produces a semantic parse, logical knowledge base, grounding and denotation
(middle), using only language/denotation pairs (right) for training.

mented image (Figure 1a), and a natural language
query, such as “the things to the right of the blue
mug.” Given these inputs, LSP produces (1) a logi-
cal knowledge base describing objects and relation-
ships in the environment and (2) a semantic parse of
the query capturing its compositional structure. LSP
combines these two outputs to produce the query’s
grounding, which is the set of object referents of the
query’s noun phrases, and its denotation, which is
the query’s answer (Figure 1b).1 Weakly supervised
training estimates parameters for LSP using queries
annotated with their denotations in an environment
(Figure 1c).

This work has two contributions. The first con-
tribution is LSP, which is more expressive than pre-
vious models, representing both one-argument cat-
egories and two-argument relations over sets of ob-
jects in the environment. The second contribution
is a weakly supervised training procedure that esti-
mates LSP’s parameters without annotated semantic
parses, noun phrase/object mappings, or manually-
constructed knowledge bases.

We perform experiments on two different applica-
tions. The first application is scene understanding,
where LSP grounds descriptions of images in im-
age segments. The second application is geograph-
ical question answering, where LSP learns to an-
swer questions about locations, represented as poly-
gons on a map. In geographical question answering,

1We treat declarative sentences as if they were queries about
their subject, e.g., the denotation of “the mug is on the table” is
the set of mugs on tables. Typically, the denotation of a sentence
is either true or false; our treatment is strictly more general, as
a sentence’s denotation is nonempty if and only if the sentence
is true.

LSP correctly answers 34% more questions than the
most comparable state-of-the-art model (Matuszek
et al., 2012). In scene understanding, accuracy sim-
ilarly improves by 16%. Furthermore, weakly su-
pervised training achieves an accuracy within 6% of
that achieved by fully supervised training, while re-
quiring significantly less annotation effort.

2 Prior Work

Logical Semantics with Perception (LSP) is related
to work from planning, natural language processing,
computer vision and robotics. Much of the related
work focuses on interpreting natural language us-
ing a fixed formal representation. Some work con-
structs integrated systems which execute plans in re-
sponse to natural language commands (Winograd,
1970; Hsiao et al., 2003; Roy et al., 2003; Skubic
et al., 2004; MacMahon et al., 2006; Levit and Roy,
2007; Kruijff et al., 2007). These systems parse
natural language to a formal representation which
can be executed using a set of fixed control pro-
grams. Similarly, work on semantic parsing learns
to map natural language to a given formal repre-
sentation. Semantic parsers can be trained using
sentences annotated with their formal representation
(Zelle and Mooney, 1996; Zettlemoyer and Collins,
2005; Kate and Mooney, 2006; Kwiatkowski et al.,
2010) or various less restrictive annotations (Clarke
et al., 2010; Liang et al., 2011; Krishnamurthy and
Mitchell, 2012). Finally, work on grounded lan-
guage acquisition leverages semantic parsing to map
from natural language to a formal representation of
an environment (Kate and Mooney, 2007; Chen and
Mooney, 2008; Shimizu and Haas, 2009; Matuszek

194

γ

feval

Γd
fper

ℓ z
fprs

t

Figure 3: Factor graph of LSP. The environment d
and language z are given as input, from which the
model predicts a logical knowledge base �, logical
form `, syntactic tree t and denotation �.

ical knowledge base � that assigns truth values to
instances of these predicates using parameters ✓

per

.
This function uses an independent classifier to pre-
dict the instances of each predicate. The seman-
tic parser f

prs

takes a natural language statement z
and produces a logical form ` and syntactic parse
t using parameters ✓

prs

. The logical form ` is a
database query expressed in lambda calculus nota-
tion, constructed by logically combining the given
predicates. Finally, the evaluation function f

eval

de-
terministically evaluates the logical form ` on the
knowledge base � to produce a denotation �. These
components are illustrated in Figure 2.

The following sections describe the percep-
tion function (Section 3.1), semantic parser (Sec-
tion 3.2), evaluation function (Section 3.3), and in-
ference (Section 3.4) in more detail.

3.1 Perception Function

The perception function f
per

constructs a logical
knowledge base � given an environment d. The per-
ception function assumes that an environment con-
tains a collection of entities e 2 E

d

. The knowl-
edge base produced by perception is a collection of
ground predicate instances using these entities. For
example, in Figure 2a, the entire image is the envi-
ronment, and each image segment is an entity. The
logical knowledge base � contains the shown pred-
icate instances, where the categories include blue,
mug and table, and the relations include on-rel.

The perception function scores logical knowledge
bases using a set of per-predicate binary classifiers.
These classifiers independently assign a score to
whether each entity (entity pair) is an element of
each category (relation). Let �c 2 � denote the set
of entities which are elements of category c; simi-
larly, let �r 2 � denote the set of entity pairs which
are elements of the relation r. Given these sets, the
score of a logical knowledge base � factors into per-

relation and per-category scores h:

f
per

(�, d; ✓
per

) =

X

c2C
h(�c, d; ✓c

per

)

+

X

r2R
h(�r, d; ✓r

per

)

The per-predicate scores are in turn given by a
sum of per-element classification scores:

h(�c, d; ✓c
per

) =

X

e2Ed

�c(e)(✓c
per

)

T�
cat

(e)

h(�r, d; ✓r
per

) =

X

(e1,e2)2Ed

�r(e1, e2)(✓
r

per

)

T�
rel

(e1, e2)

Each term in the above sums represents a single
binary classification, determining the score for a sin-
gle entity (entity pair) belonging to a particular cat-
egory (relation). We treat �c and �r as indicator
functions for the sets they denote, i.e., �c(e) = 1

for entities e in the set, and 0 otherwise. Similarly,
�r(e1, e2) = 1 for entity pairs (e1, e2) in the set,
and 0 otherwise. The features of these classifiers are
given by �

cat

and �
rel

, which are feature functions
that map entities and entity pairs to feature vectors.
The parameters of these classifiers are given by ✓c

per

and ✓r
per

. The perception parameters ✓
per

contain
one such set of parameters for every category and re-
lation, i.e., ✓

per

= {✓c
per

: c 2 C} [{✓r
per

: r 2 R}.

3.2 Semantic Parser

The goal of semantic parsing is to identify which
portions of the input natural language denote enti-
ties and relationships between entities in the envi-
ronment. Semantic parsing accomplishes this goal
by mapping from natural language to a logical form
that explicitly describes the language’s entity refer-
ents using one- and two-argument predicates. The
logical form is combined with instances of these
predicates to produce the statement’s denotation.

LSP’s semantic parser is defined using Combina-
tory Categorial Grammar (CCG) (Steedman, 1996).
The grammar of the parser is given by a lexicon ⇤

which maps words to syntactic categories and logi-
cal forms. For example, “mug” may have the syn-
tactic category N for noun, and the logical form
�x.mug(x), denoting the set of all entities x such
that mug is true. During parsing, the logical forms
for adjacent phrases are combined to produce the
logical form for the complete statement.

196

A mug left of the monitor

γ

feval

Γd
fper

ℓ z
fprs

t

Figure 3: Factor graph of LSP. The environment d
and language z are given as input, from which the
model predicts a logical knowledge base �, logical
form `, syntactic tree t and denotation �.

ical knowledge base � that assigns truth values to
instances of these predicates using parameters ✓

per

.
This function uses an independent classifier to pre-
dict the instances of each predicate. The seman-
tic parser f

prs

takes a natural language statement z
and produces a logical form ` and syntactic parse
t using parameters ✓

prs

. The logical form ` is a
database query expressed in lambda calculus nota-
tion, constructed by logically combining the given
predicates. Finally, the evaluation function f

eval

de-
terministically evaluates the logical form ` on the
knowledge base � to produce a denotation �. These
components are illustrated in Figure 2.

The following sections describe the percep-
tion function (Section 3.1), semantic parser (Sec-
tion 3.2), evaluation function (Section 3.3), and in-
ference (Section 3.4) in more detail.

3.1 Perception Function

The perception function f
per

constructs a logical
knowledge base � given an environment d. The per-
ception function assumes that an environment con-
tains a collection of entities e 2 E

d

. The knowl-
edge base produced by perception is a collection of
ground predicate instances using these entities. For
example, in Figure 2a, the entire image is the envi-
ronment, and each image segment is an entity. The
logical knowledge base � contains the shown pred-
icate instances, where the categories include blue,
mug and table, and the relations include on-rel.

The perception function scores logical knowledge
bases using a set of per-predicate binary classifiers.
These classifiers independently assign a score to
whether each entity (entity pair) is an element of
each category (relation). Let �c 2 � denote the set
of entities which are elements of category c; simi-
larly, let �r 2 � denote the set of entity pairs which
are elements of the relation r. Given these sets, the
score of a logical knowledge base � factors into per-

relation and per-category scores h:

f
per

(�, d; ✓
per

) =

X

c2C
h(�c, d; ✓c

per

)

+

X

r2R
h(�r, d; ✓r

per

)

The per-predicate scores are in turn given by a
sum of per-element classification scores:

h(�c, d; ✓c
per

) =

X

e2Ed

�c(e)(✓c
per

)

T�
cat

(e)

h(�r, d; ✓r
per

) =

X

(e1,e2)2Ed

�r(e1, e2)(✓
r

per

)

T�
rel

(e1, e2)

Each term in the above sums represents a single
binary classification, determining the score for a sin-
gle entity (entity pair) belonging to a particular cat-
egory (relation). We treat �c and �r as indicator
functions for the sets they denote, i.e., �c(e) = 1

for entities e in the set, and 0 otherwise. Similarly,
�r(e1, e2) = 1 for entity pairs (e1, e2) in the set,
and 0 otherwise. The features of these classifiers are
given by �

cat

and �
rel

, which are feature functions
that map entities and entity pairs to feature vectors.
The parameters of these classifiers are given by ✓c

per

and ✓r
per

. The perception parameters ✓
per

contain
one such set of parameters for every category and re-
lation, i.e., ✓

per

= {✓c
per

: c 2 C} [{✓r
per

: r 2 R}.

3.2 Semantic Parser

The goal of semantic parsing is to identify which
portions of the input natural language denote enti-
ties and relationships between entities in the envi-
ronment. Semantic parsing accomplishes this goal
by mapping from natural language to a logical form
that explicitly describes the language’s entity refer-
ents using one- and two-argument predicates. The
logical form is combined with instances of these
predicates to produce the statement’s denotation.

LSP’s semantic parser is defined using Combina-
tory Categorial Grammar (CCG) (Steedman, 1996).
The grammar of the parser is given by a lexicon ⇤

which maps words to syntactic categories and logi-
cal forms. For example, “mug” may have the syn-
tactic category N for noun, and the logical form
�x.mug(x), denoting the set of all entities x such
that mug is true. During parsing, the logical forms
for adjacent phrases are combined to produce the
logical form for the complete statement.

196

(a) An environment containing 4
objects (image segments).

Environment:

(image on left)

Knowledge Base

Query:
“things to the right
of the blue mug”

Semantic Parse

Grounding: {(2, 1), (3, 1)}
Denotation: {2, 3}

(b) LSP predicting the environmental referents of
a natural language query.

Language Denotation

The mugs {1, 3}
The objects on the table {1, 2, 3}
There is an LCD monitor {2}
Is the blue mug right {}of the monitor?
The monitor is behind {2}the blue cup.

(c) Training examples for weakly su-
pervised training.

Figure 1: LSP applied to scene understanding. Given an environment containing a set of objects (left), and a
natural language query, LSP produces a semantic parse, logical knowledge base, grounding and denotation
(middle), using only language/denotation pairs (right) for training.

mented image (Figure 1a), and a natural language
query, such as “the things to the right of the blue
mug.” Given these inputs, LSP produces (1) a logi-
cal knowledge base describing objects and relation-
ships in the environment and (2) a semantic parse of
the query capturing its compositional structure. LSP
combines these two outputs to produce the query’s
grounding, which is the set of object referents of the
query’s noun phrases, and its denotation, which is
the query’s answer (Figure 1b).1 Weakly supervised
training estimates parameters for LSP using queries
annotated with their denotations in an environment
(Figure 1c).

This work has two contributions. The first con-
tribution is LSP, which is more expressive than pre-
vious models, representing both one-argument cat-
egories and two-argument relations over sets of ob-
jects in the environment. The second contribution
is a weakly supervised training procedure that esti-
mates LSP’s parameters without annotated semantic
parses, noun phrase/object mappings, or manually-
constructed knowledge bases.

We perform experiments on two different applica-
tions. The first application is scene understanding,
where LSP grounds descriptions of images in im-
age segments. The second application is geograph-
ical question answering, where LSP learns to an-
swer questions about locations, represented as poly-
gons on a map. In geographical question answering,

1We treat declarative sentences as if they were queries about
their subject, e.g., the denotation of “the mug is on the table” is
the set of mugs on tables. Typically, the denotation of a sentence
is either true or false; our treatment is strictly more general, as
a sentence’s denotation is nonempty if and only if the sentence
is true.

LSP correctly answers 34% more questions than the
most comparable state-of-the-art model (Matuszek
et al., 2012). In scene understanding, accuracy sim-
ilarly improves by 16%. Furthermore, weakly su-
pervised training achieves an accuracy within 6% of
that achieved by fully supervised training, while re-
quiring significantly less annotation effort.

2 Prior Work

Logical Semantics with Perception (LSP) is related
to work from planning, natural language processing,
computer vision and robotics. Much of the related
work focuses on interpreting natural language us-
ing a fixed formal representation. Some work con-
structs integrated systems which execute plans in re-
sponse to natural language commands (Winograd,
1970; Hsiao et al., 2003; Roy et al., 2003; Skubic
et al., 2004; MacMahon et al., 2006; Levit and Roy,
2007; Kruijff et al., 2007). These systems parse
natural language to a formal representation which
can be executed using a set of fixed control pro-
grams. Similarly, work on semantic parsing learns
to map natural language to a given formal repre-
sentation. Semantic parsers can be trained using
sentences annotated with their formal representation
(Zelle and Mooney, 1996; Zettlemoyer and Collins,
2005; Kate and Mooney, 2006; Kwiatkowski et al.,
2010) or various less restrictive annotations (Clarke
et al., 2010; Liang et al., 2011; Krishnamurthy and
Mitchell, 2012). Finally, work on grounded lan-
guage acquisition leverages semantic parsing to map
from natural language to a formal representation of
an environment (Kate and Mooney, 2007; Chen and
Mooney, 2008; Shimizu and Haas, 2009; Matuszek

194

(a)Anenvironmentcontaining4
objects(imagesegments).

Environment:

(imageonleft)

KnowledgeBase

Query:
“thingstotheright
ofthebluemug”

SemanticParse

Grounding:{(2,1),(3,1)}
Denotation:{2,3}

(b)LSPpredictingtheenvironmentalreferentsof
anaturallanguagequery.

LanguageDenotation

Themugs{1,3}
Theobjectsonthetable{1,2,3}
ThereisanLCDmonitor{2}
Isthebluemugright{} ofthemonitor?
Themonitorisbehind{2} thebluecup.

(c)Trainingexamplesforweaklysu-
pervisedtraining.

Figure1:LSPappliedtosceneunderstanding.Givenanenvironmentcontainingasetofobjects(left),anda
naturallanguagequery,LSPproducesasemanticparse,logicalknowledgebase,groundinganddenotation
(middle),usingonlylanguage/denotationpairs(right)fortraining.

mentedimage(Figure1a),andanaturallanguage
query,suchas“thethingstotherightoftheblue
mug.”Giventheseinputs,LSPproduces(1)alogi-
calknowledgebasedescribingobjectsandrelation-
shipsintheenvironmentand(2)asemanticparseof
thequerycapturingitscompositionalstructure.LSP
combinesthesetwooutputstoproducethequery’s
grounding,whichisthesetofobjectreferentsofthe
query’snounphrases,anditsdenotation,whichis
thequery’sanswer(Figure1b).1Weaklysupervised
trainingestimatesparametersforLSPusingqueries
annotatedwiththeirdenotationsinanenvironment
(Figure1c).

Thisworkhastwocontributions.Thefirstcon-
tributionisLSP,whichismoreexpressivethanpre-
viousmodels,representingbothone-argumentcat-
egoriesandtwo-argumentrelationsoversetsofob-
jectsintheenvironment.Thesecondcontribution
isaweaklysupervisedtrainingprocedurethatesti-
matesLSP’sparameterswithoutannotatedsemantic
parses,nounphrase/objectmappings,ormanually-
constructedknowledgebases.

Weperformexperimentsontwodifferentapplica-
tions.Thefirstapplicationissceneunderstanding,
whereLSPgroundsdescriptionsofimagesinim-
agesegments.Thesecondapplicationisgeograph-
icalquestionanswering,whereLSPlearnstoan-
swerquestionsaboutlocations,representedaspoly-
gonsonamap.Ingeographicalquestionanswering,

1
Wetreatdeclarativesentencesasiftheywerequeriesabout

theirsubject,e.g.,thedenotationof“themugisonthetable”is
thesetofmugsontables.Typically,thedenotationofasentence
iseithertrueorfalse;ourtreatmentisstrictlymoregeneral,as
asentence’sdenotationisnonemptyifandonlyifthesentence
istrue.

LSPcorrectlyanswers34%morequestionsthanthe
mostcomparablestate-of-the-artmodel(Matuszek
etal.,2012).Insceneunderstanding,accuracysim-
ilarlyimprovesby16%.Furthermore,weaklysu-
pervisedtrainingachievesanaccuracywithin6%of
thatachievedbyfullysupervisedtraining,whilere-
quiringsignificantlylessannotationeffort.

2PriorWork

LogicalSemanticswithPerception(LSP)isrelated
toworkfromplanning,naturallanguageprocessing,
computervisionandrobotics.Muchoftherelated
workfocusesoninterpretingnaturallanguageus-
ingafixedformalrepresentation.Someworkcon-
structsintegratedsystemswhichexecuteplansinre-
sponsetonaturallanguagecommands(Winograd,
1970;Hsiaoetal.,2003;Royetal.,2003;Skubic
etal.,2004;MacMahonetal.,2006;LevitandRoy,
2007;Kruijffetal.,2007).Thesesystemsparse
naturallanguagetoaformalrepresentationwhich
canbeexecutedusingasetoffixedcontrolpro-
grams.Similarly,workonsemanticparsinglearns
tomapnaturallanguagetoagivenformalrepre-
sentation.Semanticparserscanbetrainedusing
sentencesannotatedwiththeirformalrepresentation
(ZelleandMooney,1996;ZettlemoyerandCollins,
2005;KateandMooney,2006;Kwiatkowskietal.,
2010)orvariouslessrestrictiveannotations(Clarke
etal.,2010;Liangetal.,2011;Krishnamurthyand
Mitchell,2012).Finally,workongroundedlan-
guageacquisitionleveragessemanticparsingtomap
fromnaturallanguagetoaformalrepresentationof
anenvironment(KateandMooney,2007;Chenand
Mooney,2008;ShimizuandHaas,2009;Matuszek

194

M. Malinowski | Grounding 13

Question answering problem

How high is the highest point in the largest state?

W
universe

Q
question

A
answer

Semantic
parsing T

logical
form

Evaluation
6.000 m

P. Liang, M. Jordan, D. Klein. Learning Dependency-Based Compositional
Semantics. ACL’11

J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic Parsing on Freebase
from Question-Answer Pairs. EMNLP’13.

M. Malinowski | Grounding 14

Question answering problem
What is in front of sofa in image 1?

Scene
analysis

sofa (1,brown, image 1, X,Y,Z)

chair (1,brown, image 4, X,Y,Z)
chair (2,brown, image 4, X,Y,Z)

table(1,brown, image 1,X,Y,Z)
wall (1,white, image 1, X,Y,Z)
bed (1, white, image 2 X,Y,Z)

chair (1,brown, image 5, X,Y,Z)

…

W
universe

Q
question

A
answer

Semantic
parsing T

logical
form

Evaluation
table

Our knowledge base

M. Malinowski | Grounding 15

Results

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

Denotation � 0 rel. 1 rel. other total

LSP-CAT 0.94 0.45 0.20 0.51
LSP-F 0.89 0.81 0.20 0.70

LSP-W 0.89 0.77 0.16 0.67

Grounding g 0 rel. 1 rel. other total

LSP-CAT 0.94 0.37 0.00 0.42
LSP-F 0.89 0.80 0.00 0.65

LSP-W 0.89 0.70 0.00 0.59

% of data 23 56 21 100

(a) Results on the SCENE data set.

Denotation � 0 rel. 1 rel. other total

LSP-CAT 0.22 0.19 0.07 0.17
LSP-F 0.64 0.53 0.21 0.48
LSP-W 0.64 0.58 0.21 0.51

Grounding g 0 rel. 1 rel. other total

LSP-CAT 0.22 0.19 0.00 0.16
LSP-F 0.64 0.53 0.17 0.47
LSP-W 0.64 0.58 0.15 0.50

% of data 8 72 20 100

(b) Results on the GEOQA data set.

Table 2: Model performance on the SCENE and GEOQA datasets. LSP-CAT is an ablated version of LSP
that only learns categories (similar to Matuszek et al. (2012)), LSP-F is LSP trained with annotated seman-
tic parses and logical knowledge bases, and LSP-W is LSP trained on sentences with annotated denotations.
Results are separated by the number of relations in each test natural language statement.

number of possible sets grows exponentially in the
number of entities in the environment. Say an en-
vironment has 5 entities and a logical form has two
variables; then there are 2

5 possible denotations and
2

25 possible groundings. To quantify this difficulty,
note that selecting a denotation uniformly at random
achieves 6% accuracy on SCENE, and 1% accuracy
on GEOQA; selecting a random grounding achieves
1% and 0% accuracy, respectively.

Table 2 shows results for both applications us-
ing exact match accuracy. To better understand the
performance of each model, we break down perfor-
mance according to linguistic complexity. We com-
pute the number of relations in the annotated logical
form for each statement, and show separate results
for 0 and 1 relations. We also include an “other”
category to capture sentences with more than one
relation (very infrequent), or that include quanti-
fiers, comparatives, or other linguistic phenomena
not captured by LSP.

The results from these experiments suggest three
conclusions. First, we find that modelling relations
is important for both applications, as (1) the major-
ity of examples contain relational language, and (2)
LSP-W and LSP-F dramatically outperform LSP-
CAT on these examples. The low performance of
LSP-CAT suggests that many denotations cannot
be predicted from only the first noun phrase in a
statement, demonstrating that both applications re-
quire an understanding of relations. Second, we find
that weakly supervised training and fully supervised

training perform similarly, with accuracy differences
in the range of 3%-6%. Finally, we find that LSP-W
performs similarly on both the denotation and com-
plete grounding tasks; this result suggests that when
LSP-W predicts a correct denotation, it does so be-
cause it has identified the correct entity referents of
each portion of the statement.

5.6 Component Error Analysis

We performed an error analysis of each model com-
ponent to better understand the causes of errors. Ta-
ble 3 shows the accuracy of the semantic parser from
each trained model. Each held-out sentence zi is
parsed to produce a logical form `, which is marked
correct if it exactly matches our manual annotation
`i. A correct logical form implies a correct ground-
ing for the statement when the parse is evaluated in
the gold standard logical knowledge base. These re-
sults show that both LSP-W and LSP-F have rea-
sonably accurate semantic parsers, given the restric-
tions on possible logical forms. Common mistakes
include missing lexicon entries (e.g., “borders” is
POS-tagged as a noun, so the GEOQA lexicon does
not include a verb for it) and prepositional phrase
attachments (e.g., 6th example in Figure 5).

Table 4 shows the precision and recall of the in-
dividual perceptual classifiers. We computed these
metrics by comparing each annotated predicate in
the held-out environment with the model’s predic-
tions for the same predicate, treating each entity (or
entity pair) as an independent example for classifi-

202

M. Malinowski | Grounding 16

Roadmap

Learning Dependency-Based
Compositional Semantics  
(P. Liang et. al. ACL 2011)

?

Learning Dependency-Based Compositional Semantics

Percy Liang

UC Berkeley
pliang@cs.berkeley.edu

Michael I. Jordan

UC Berkeley
jordan@cs.berkeley.edu

Dan Klein

UC Berkeley
klein@cs.berkeley.edu

Abstract

Compositional question answering begins by
mapping questions to logical forms, but train-
ing a semantic parser to perform this mapping
typically requires the costly annotation of the
target logical forms. In this paper, we learn
to map questions to answers via latent log-
ical forms, which are induced automatically
from question-answer pairs. In tackling this
challenging learning problem, we introduce a
new semantic representation which highlights
a parallel between dependency syntax and effi-
cient evaluation of logical forms. On two stan-
dard semantic parsing benchmarks (GEO and
JOBS), our system obtains the highest pub-
lished accuracies, despite requiring no anno-
tated logical forms.

1 Introduction

What is the total population of the ten largest cap-
itals in the US? Answering these types of complex
questions compositionally involves first mapping the
questions into logical forms (semantic parsing). Su-
pervised semantic parsers (Zelle and Mooney, 1996;
Tang and Mooney, 2001; Ge and Mooney, 2005;
Zettlemoyer and Collins, 2005; Kate and Mooney,
2007; Zettlemoyer and Collins, 2007; Wong and
Mooney, 2007; Kwiatkowski et al., 2010) rely on
manual annotation of logical forms, which is expen-
sive. On the other hand, existing unsupervised se-
mantic parsers (Poon and Domingos, 2009) do not
handle deeper linguistic phenomena such as quan-
tification, negation, and superlatives.

As in Clarke et al. (2010), we obviate the need
for annotated logical forms by considering the end-
to-end problem of mapping questions to answers.
However, we still model the logical form (now as a
latent variable) to capture the complexities of lan-
guage. Figure 1 shows our probabilistic model:

(parameters) (world)

✓ w

x z y

(question) (logical form) (answer)

state with the
largest area

x1x1

1

1

cc

argmax

area

state

⇤⇤ Alaska

z ⇠ p✓(z | x)

y = JzKw

Semantic Parsing Evaluation

Figure 1: Our probabilistic model: a question x is
mapped to a latent logical form z, which is then evaluated
with respect to a world w (database of facts), producing
an answer y. We represent logical forms z as labeled
trees, induced automatically from (x, y) pairs.

We want to induce latent logical forms z (and pa-
rameters ✓) given only question-answer pairs (x, y),
which is much cheaper to obtain than (x, z) pairs.

The core problem that arises in this setting is pro-
gram induction: finding a logical form z (over an
exponentially large space of possibilities) that pro-
duces the target answer y. Unlike standard semantic
parsing, our end goal is only to generate the correct
y, so we are free to choose the representation for z.
Which one should we use?

The dominant paradigm in compositional se-
mantics is Montague semantics, which constructs
lambda calculus forms in a bottom-up manner. CCG
is one instantiation (Steedman, 2000), which is used
by many semantic parsers, e.g., Zettlemoyer and
Collins (2005). However, the logical forms there
can become quite complex, and in the context of
program induction, this would lead to an unwieldy
search space. At the same time, representations such
as FunQL (Kate et al., 2005), which was used in

Jointly Learning to Parse and Perceive:  
Connecting Natural Language to the

Physical World.!
(J. Krishnamurthy et. al. TACL 2013)

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

Some ideas

M. Malinowski | Grounding 17

Current limitations
• Language
‣ At most 1 relation
‣ Doesn’t model more complex phenomena (negations, superlatives, …)

• Vision
‣ Dataset is restricted
‣ No uncertainty

• A computer system is on
the table

• There are items on the
desk

• There are two cups on the
table

• The computer is off

M. Malinowski | Grounding 18

Current limitations
• Language
‣ At most 1 relation
‣ Doesn’t model more complex phenomena (negations, superlatives, …)

• Vision
‣ Dataset is restricted
‣ No uncertainty

M. Malinowski | Grounding 19

Our suggestions
• Language
‣ At most 1 relation
‣ Doesn’t model more complex phenomena (negations, superlatives, …)

• Vision
‣ Dataset is restricted
‣ No uncertainty

• A computer system is on
the table

• There are items on the
desk

• There are two cups on the
table

• The computer is off

• What is the object in front of the
photocopying machine attached to
the wall?

• What is the object that is placed on
the middle rack of the stand that is
placed closed to the wall?

• What is time showing on the
clock?

M. Malinowski | Grounding 20

Our suggestions
• Language
‣ At most 1 relation
‣ Doesn’t model more complex phenomena (negations, superlatives, …)

• Vision
‣ Dataset is restricted
‣ No uncertainty

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV
#***

ECCV
#***

10 ECCV-14 submission ID ***

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

Fig. 5. A few samples from the NYU-Depth V2 dataset. Top row shows the images, the
second row a Z axis of the image, the third row ground truth semantic segmentations,
the the last bottom row predicted semantic segmentation.

the form of semantic segmentations (Figure 5) where every pixel is classified into
an object class. Similarly to [11], we preprocess data to obtain a canonical view
of the scenes and use X, Y , X axis from that view do define spatial placement
of the objects.

In order to compute uncertain detections we first employ the best trained
model from [11], and next use the predicted segmentations to fit 3d cuboids into
the objects in the images - our detections. Using such detections we have build
di↵erent perceived universes (Sections 3.1 and 3.5) for our experiments. In our
experiments, we use both the ground truth and uncertain detections. However,
we are consistent in the experiments with respect to the choice of the detections
- either we train and test using ground truth detections or uncertain ones. We
also use the same training and testing split as [11].

Moreover, we have also collected questions and answers pairs. Every ques-
tion is given in natural language, whereas answers are logical formulas. We have
created those pairs using two procedures: automatic generation and human an-

• Indoor Segmentation and Support
Inference from RGBD Images
(Silberman et. al. ECCV’12)

• Perceptual organization and
recognition of indoor scenes from
rgb-d images (Gupta et. al. CVPR’13)

M. Malinowski | Grounding 21

Our suggestions
• Language
‣ At most 1 relation
‣ Doesn’t model more complex phenomena (negations, superlatives, …)

• Vision
‣ Dataset is restricted
‣ No uncertainty

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV
#***

ECCV
#***

8 ECCV-14 submission ID ***

A

Q

T

W

question

semantic tree

answer

universesemantic
segmentation

S

Fig. 4. Our Bayesian model to question answering from noisy observations. At test
time we observe the question as well as the output of the semantic scene segmentation.
Di↵erent hypothesis of the universe and the semantic tree are marginalized out in order
to infer the most likely answer.

model. We run inference over answers A based on observed semantic scene seg-
mentations S and questions Q while the universe W and semantic trees T are
latent. Figure 2 show a few possible universes. The posterior over the answer A
is calculated by marginalizing over the latent universes W and semantic trees T :

P (A | Q, S) :=
X

W

X

T
P (A | W, T)P (W | S) P (T | Q) (3)

Marginalizing over all possible universes given a certain semantic segmentation
is computation intractable, wherefore we use a sampling strategy that draws a
finite sample from P (W|S):

P (A | Q, S) ⇡
X

W⇠P(W|S)

X

T
P (A | W, T)P (T |Q) (4)

where the possible universes W are sampled the segmentation of the image ac-
cording to their confidence scores [11] as follows: The segmentation is a set of
segments with probabilities S = {(s1, p1), . . . , (sN , p

N

)}. Each universe is a draw
from the segmentation such that P (s

i

2 W) = p
i

.
The probability of the latent semantic tree given the question P (T |Q) is a log-

linear distribution over the set of all possible valid semantic trees Z(Q) for the
given question Q. Formally, P (T |Q) / exp(✓T�(Q, T)) where ✓ are parameters
of the probabilistic model that are learnt from the questions-answer pairs, and
�(Q, T) is a feature vector that measures the compatibility between the question

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV
#***

ECCV
#***

4 ECCV-14 submission ID ***

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

Fig. 2. A few sampled universes and one ground truth universe (top-left). Top left
presents the original picture, top right is the best universe (the most confident detec-
tions are taken), while the bottom row shows three possible universes. Although, at
first glance the best universe seems to be reasonable approach, our experiments shows
opposite, and we can actually benefit from more imperfect but multiple universes.

comes from the coordinate system aligned according to the direction of grav-
ity [11]. This brings more meaningful representation of the object’s coordinates
than simple image coordinates (see Figure 3). In this paper we use universes,
perceived universes and database interchangeably.

In this paper, we also use notation W
Q

to denote a universe where detections
come from a set of images that are consistent with the question. For instance,
the question ’Which image, either image 1 or image 2, has a bed closer to a
window?’ restrict the universe to a set of detections from the first and second
images.

3.2 Spatial relations

Since the spatial prepositions play an important role in our spatial reasoning,
we define and include the spatial relations into our architecture. The list of the
spatial relations and corresponding definitions are in Table 1. Although hand-
designed, their main purpose is to show that our architecture can handle more

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV
#***

ECCV
#***

8 ECCV-14 submission ID ***

A

Q

T

W

question

semantic tree

answer

universesemantic
segmentation

S

Fig. 4. Our Bayesian model to question answering from noisy observations. At test
time we observe the question as well as the output of the semantic scene segmentation.
Di↵erent hypothesis of the universe and the semantic tree are marginalized out in order
to infer the most likely answer.

model. We run inference over answers A based on observed semantic scene seg-
mentations S and questions Q while the universe W and semantic trees T are
latent. Figure 2 show a few possible universes. The posterior over the answer A
is calculated by marginalizing over the latent universes W and semantic trees T :

P (A | Q, S) :=
X

W

X

T
P (A | W, T)P (W | S) P (T | Q) (3)

Marginalizing over all possible universes given a certain semantic segmentation
is computation intractable, wherefore we use a sampling strategy that draws a
finite sample from P (W|S):

P (A | Q, S) ⇡
X

W⇠P(W|S)

X

T
P (A | W, T)P (T |Q) (4)

where the possible universes W are sampled the segmentation of the image ac-
cording to their confidence scores [11] as follows: The segmentation is a set of
segments with probabilities S = {(s1, p1), . . . , (sN , p

N

)}. Each universe is a draw
from the segmentation such that P (s

i

2 W) = p
i

.
The probability of the latent semantic tree given the question P (T |Q) is a log-

linear distribution over the set of all possible valid semantic trees Z(Q) for the
given question Q. Formally, P (T |Q) / exp(✓T�(Q, T)) where ✓ are parameters
of the probabilistic model that are learnt from the questions-answer pairs, and
�(Q, T) is a feature vector that measures the compatibility between the question

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV
#***

ECCV
#***

8 ECCV-14 submission ID ***

A

Q

T

W

question

semantic tree

answer

universesemantic
segmentation

S

Fig. 4. Our Bayesian model to question answering from noisy observations. At test
time we observe the question as well as the output of the semantic scene segmentation.
Di↵erent hypothesis of the universe and the semantic tree are marginalized out in order
to infer the most likely answer.

model. We run inference over answers A based on observed semantic scene seg-
mentations S and questions Q while the universe W and semantic trees T are
latent. Figure 2 show a few possible universes. The posterior over the answer A
is calculated by marginalizing over the latent universes W and semantic trees T :

P (A | Q, S) :=
X

W

X

T
P (A | W, T)P (W | S) P (T | Q) (3)

Marginalizing over all possible universes given a certain semantic segmentation
is computation intractable, wherefore we use a sampling strategy that draws a
finite sample from P (W|S):

P (A | Q, S) ⇡
X

W⇠P(W|S)

X

T
P (A | W, T)P (T |Q) (4)

where the possible universes W are sampled the segmentation of the image ac-
cording to their confidence scores [11] as follows: The segmentation is a set of
segments with probabilities S = {(s1, p1), . . . , (sN , p

N

)}. Each universe is a draw
from the segmentation such that P (s

i

2 W) = p
i

.
The probability of the latent semantic tree given the question P (T |Q) is a log-

linear distribution over the set of all possible valid semantic trees Z(Q) for the
given question Q. Formally, P (T |Q) / exp(✓T�(Q, T)) where ✓ are parameters
of the probabilistic model that are learnt from the questions-answer pairs, and
�(Q, T) is a feature vector that measures the compatibility between the question

M. Malinowski | Grounding 22

Results
315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV
#***

ECCV
#***

8 ECCV-14 submission ID ***

A

Q

T

W

question

semantic tree

answer

universesemantic
segmentation

S

Fig. 4. Our Bayesian model to question answering from noisy observations. At test
time we observe the question as well as the output of the semantic scene segmentation.
Di↵erent hypothesis of the universe and the semantic tree are marginalized out in order
to infer the most likely answer.

model. We run inference over answers A based on observed semantic scene seg-
mentations S and questions Q while the universe W and semantic trees T are
latent. Figure 2 show a few possible universes. The posterior over the answer A
is calculated by marginalizing over the latent universes W and semantic trees T :

P (A | Q, S) :=
X

W

X

T
P (A | W, T)P (W | S) P (T | Q) (3)

Marginalizing over all possible universes given a certain semantic segmentation
is computation intractable, wherefore we use a sampling strategy that draws a
finite sample from P (W|S):

P (A | Q, S) ⇡
X

W⇠P(W|S)

X

T
P (A | W, T)P (T |Q) (4)

where the possible universes W are sampled the segmentation of the image ac-
cording to their confidence scores [11] as follows: The segmentation is a set of
segments with probabilities S = {(s1, p1), . . . , (sN , p

N

)}. Each universe is a draw
from the segmentation such that P (s

i

2 W) = p
i

.
The probability of the latent semantic tree given the question P (T |Q) is a log-

linear distribution over the set of all possible valid semantic trees Z(Q) for the
given question Q. Formally, P (T |Q) / exp(✓T�(Q, T)) where ✓ are parameters
of the probabilistic model that are learnt from the questions-answer pairs, and
�(Q, T) is a feature vector that measures the compatibility between the question

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV
#***

ECCV
#***

4 ECCV-14 submission ID ***

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

Fig. 2. A few sampled universes and one ground truth universe (top-left). Top left
presents the original picture, top right is the best universe (the most confident detec-
tions are taken), while the bottom row shows three possible universes. Although, at
first glance the best universe seems to be reasonable approach, our experiments shows
opposite, and we can actually benefit from more imperfect but multiple universes.

comes from the coordinate system aligned according to the direction of grav-
ity [11]. This brings more meaningful representation of the object’s coordinates
than simple image coordinates (see Figure 3). In this paper we use universes,
perceived universes and database interchangeably.

In this paper, we also use notation W
Q

to denote a universe where detections
come from a set of images that are consistent with the question. For instance,
the question ’Which image, either image 1 or image 2, has a bed closer to a
window?’ restrict the universe to a set of detections from the first and second
images.

3.2 Spatial relations

Since the spatial prepositions play an important role in our spatial reasoning,
we define and include the spatial relations into our architecture. The list of the
spatial relations and corresponding definitions are in Table 1. Although hand-
designed, their main purpose is to show that our architecture can handle more

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV
#***

ECCV
#***

8 ECCV-14 submission ID ***

A

Q

T

W

question

semantic tree

answer

universesemantic
segmentation

S

Fig. 4. Our Bayesian model to question answering from noisy observations. At test
time we observe the question as well as the output of the semantic scene segmentation.
Di↵erent hypothesis of the universe and the semantic tree are marginalized out in order
to infer the most likely answer.

model. We run inference over answers A based on observed semantic scene seg-
mentations S and questions Q while the universe W and semantic trees T are
latent. Figure 2 show a few possible universes. The posterior over the answer A
is calculated by marginalizing over the latent universes W and semantic trees T :

P (A | Q, S) :=
X

W

X

T
P (A | W, T)P (W | S) P (T | Q) (3)

Marginalizing over all possible universes given a certain semantic segmentation
is computation intractable, wherefore we use a sampling strategy that draws a
finite sample from P (W|S):

P (A | Q, S) ⇡
X

W⇠P(W|S)

X

T
P (A | W, T)P (T |Q) (4)

where the possible universes W are sampled the segmentation of the image ac-
cording to their confidence scores [11] as follows: The segmentation is a set of
segments with probabilities S = {(s1, p1), . . . , (sN , p

N

)}. Each universe is a draw
from the segmentation such that P (s

i

2 W) = p
i

.
The probability of the latent semantic tree given the question P (T |Q) is a log-

linear distribution over the set of all possible valid semantic trees Z(Q) for the
given question Q. Formally, P (T |Q) / exp(✓T�(Q, T)) where ✓ are parameters
of the probabilistic model that are learnt from the questions-answer pairs, and
�(Q, T) is a feature vector that measures the compatibility between the question

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV
#***

ECCV
#***

8 ECCV-14 submission ID ***

A

Q

T

W

question

semantic tree

answer

universesemantic
segmentation

S

Fig. 4. Our Bayesian model to question answering from noisy observations. At test
time we observe the question as well as the output of the semantic scene segmentation.
Di↵erent hypothesis of the universe and the semantic tree are marginalized out in order
to infer the most likely answer.

model. We run inference over answers A based on observed semantic scene seg-
mentations S and questions Q while the universe W and semantic trees T are
latent. Figure 2 show a few possible universes. The posterior over the answer A
is calculated by marginalizing over the latent universes W and semantic trees T :

P (A | Q, S) :=
X

W

X

T
P (A | W, T)P (W | S) P (T | Q) (3)

Marginalizing over all possible universes given a certain semantic segmentation
is computation intractable, wherefore we use a sampling strategy that draws a
finite sample from P (W|S):

P (A | Q, S) ⇡
X

W⇠P(W|S)

X

T
P (A | W, T)P (T |Q) (4)

where the possible universes W are sampled the segmentation of the image ac-
cording to their confidence scores [11] as follows: The segmentation is a set of
segments with probabilities S = {(s1, p1), . . . , (sN , p

N

)}. Each universe is a draw
from the segmentation such that P (s

i

2 W) = p
i

.
The probability of the latent semantic tree given the question P (T |Q) is a log-

linear distribution over the set of all possible valid semantic trees Z(Q) for the
given question Q. Formally, P (T |Q) / exp(✓T�(Q, T)) where ✓ are parameters
of the probabilistic model that are learnt from the questions-answer pairs, and
�(Q, T) is a feature vector that measures the compatibility between the question

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV
#***

ECCV
#***

ECCV-14 submission ID *** 9

and the semantic tree [1]. Since the space of all valid trees Z(Q) is rather large,
we use a beam search technique to restrict its size. Therefore, for larger beams
we can expect better results, but at the same time we need to deal with the
complexity growth. The model is learnt by alternating between searching over
the restricted space of all valid trees and gradient descent updates of the model
parameters [1].

The remaining part P (A | T , W) is deterministic since there is only one valid
evaluation of the semantic tree:

P (A | T , W) :=

(
1 if A 2 �W(T)

0 if A 62 �W(T)
(5)

for the evaluation function �W(·). The second part P (T | Q) is a confidence of
the agreement between learnt semantic tree T and question Q [1]. Intuitively, the
confidence is high if the tree T is a good semantical representation of question
Q.

Regarding the computational e�ciency, the inference, which is computing
P (A | W, Q) =

P
T P (A | W, T)P (T | Q), can be done independently, and

therefore in parallel without a need for synchronization. Since the computational
costs of summing up already computed probabilities is marginal, the cost of the
multiverse approach is about the same as single inference given parallelism. As
noted in the experimental section a small number of di↵erent universes is enough
to achieve a significant improvement.

4 Experiments

Description Examples
Individual images

counting How many cabinets are in image1?
counting and colors How many gray cabinets are in image1?

room type Which type of the room is depicted in image1?
superlatives What is the largest object in image1?

Set of images
counting and colors How many black bags?
negations type 1 Which images do not have sofa?
negations type 2 Which images are not bedroom?
negations type 3 Which images have desk but do not have a lamp?

Table 2. Di↵erent templates of the questions. The questions can be about individual
images or the sets of images

We have validated our architecture on the NYU-Depth V2 dataset [6] with
an additional set of questions and logical forms. This dataset contains 1449 an-
notated RGB images together with aligned depth images. All annotations are in

fast protowriting

Mateusz Malinowski

August 2013

1 Introduction

There is a theory which states that if ever anyone discovers exactly what the
Universe is for and why it is here, it will instantly disappear and be replaced by
something even more bizarre and inexplicable. There is another theory which
states that this has already happened

subject to W 2 [0, 1]K⇥M⇥L 2 ; ⇢ {} (1)

Experiments Accuracy
Perfect detections 56%

One universe 11.25%
Multiuniverse 13.75%

Table 1: Accuracy results for di↵erent experiments. Experiment 1 shows the
capabilities of the language part of the architecture [?]. Experiments 2 and 3
show the behavior of the architecture where we also introduce uncertainty due
to detections. In experiment 3 we use our bayesian integration over multiple
universes.

al :=

8
>>><

>>>:

MX

j=1

wl
j � uj

M
max
j=1

wl
j � uj

Source Target Acc.
CIFAR-10 CIFAR-100 52.86%
CIFAR-100 CIFAR-10 80.35%

Table 2: We train the pooling regions on the ’Source’ dataset. Next, we use such
regions to train the classifier on the ’Target’ dataset where the test accuracy is
reported.

1

M. Malinowski | Grounding 23

Two dimensions of question answering challenge
Pr

ec
isi

on

Recall

Old AI

Google image?

Our dream
Recent work

?
A Joint Model of Language and Perception for Grounded Attribute Learning

Figure 3. Example scenes presented on Mechanical Turk.
Left: A scene that elicited the descriptions “here are some
red things” and “these are various types of red colored
objects”, both labeled as �x.color(x, red). Right: A scene
associated with sentence/meaning pairs such as “this toy
is orange cube” and �x.color(x, orange) ^ shape(x, cube).

objects were then marked as belonging to G, the posi-
tive set of objects for that scene. A total of 142 scenes
were shown, eliciting descriptions of 12 attributes, di-
vided evenly into shapes and colors. In total, there
were 1003 sentence/annotation pairs.

Perceptual Features To automatically segment ob-
jects from each scene, we performed RANSAC plane
fitting on the Kinect depth values to find the ta-
ble plane, then extracted connected components (seg-
ments) of points more than a minimum distance above
that plane. After getting segmented objects, features
for every object are extracted using kernel descrip-
tors (Bo et al., 2011). We extract two types of features,
for depth values and RGB values; these correspond to
shape and color attributes, respectively. During train-
ing, the system learns logistic regression classifiers us-
ing these features. In the initialization phase used to
bootstrap the model, the annotation provides informa-
tion about which language attributes relate to shape
or color. However, this information is not provided in
the training phase.

Language Features We follow (Kwiatkowski et al.,
2011) in including a standard set of binary indicator
features to define the log-linear model P (z|x; ⇥L) over
logical forms, given sentences. This includes indicators
for which lexical entries were used and properties of
the logical forms that are constructed. These features
allow the joint learning approach to weight lexical se-
lection against evidence provided by the compositional
analysis and the visual model components.

8. Results

This section presents results and a discussion of our
evaluation. We demonstrate e↵ective learning in the
full model for the object set selection task. We
then briefly describe ablation studies and examples of
learned models..

8.1. Object Set Selection

To measure set selection task performance, we di-
vided the data according to attribute. To initialize
the model, we used the data for six of the attributes to
train supervised classifiers, and provided logical forms
for the corresponding sentences to train the initial se-
mantic parsing model, as described at the end of Sec. 6.
Data for the remaining six attributes were used for
evaluation, with 80% allocated for training and 20%
held out for testing. Here, all of the visual scenes
are previously unseen, the words in the sentences de-
scribing the new attributes are unknown, and the only
available labels are the output object set G.

We report precision, recall, and F1-score on the set
selection task. Results are averaged over 10 di↵erent
runs with the training data presented in di↵erent ran-
domized orders. The system performs well, achieving
an average precision of 82%, recall of 71%, and a 76%
F1-score. This level of performance is achieved rela-
tively quickly; performance generally converges within
five passes over the training data.

8.2. Ablation Studies

To examine the need for a joint model, we measure
performance of two models in which either the lan-
guage or the visual component is sharply limited. In
each case, performance significantly degrades. These
results are summarized in Fig. 4.

Vision In order to measure how a set of classifiers
would perform on the set selection task with only a
simple language model, we manually created a the-
saurus of words used in the dataset to refer to target
attributes containing, on average, 5 di↵erent ways of
referring to each color and shape. To learn the unsu-
pervised concepts for this baseline, we first extracted
a list of all words appearing in the training corpus but
not in the initialization data; words which appear in
the thesaurus are grouped into synonym sets. To train
classifiers, we collect objects from scenes in which only
terms from the given synonym set appear. Any syn-
onym set which does not occur in at least 2 distinct
scenes is discarded. The resulting positive and neg-
ative objects are used to train classifiers. To gener-
ate a predicted set of objects at test time, we find all
synonym sets which occur in the sentence x, and de-
termine whether the classifiers associated with those
words successfully identify the object.

Averaged across our trials, the results are as follows:
Precision=0.92; Recall=0.41; F1-score=0.55. These
results are, on average, notably worse than the per-
formance of the jointly trained model.

• Large database of indoor images
• Natural questions answers pairs
• Embracing uncertainty
• Dealing with scale
• … ?

Mateusz Malinowski

Visual Turing Test:
ongoing challenge

M. Malinowski | Question Answering

Visual question answering challenge

2

!

!

!

!

!

!

!

!

• Ask about the content of the image
‣ How many sofas?
‣ Where is the lamp?
‣ What is behind the largest table?
‣ What is the color of the walls?

3
on the table, close to tv

tv
purple

The task involves

Object detection648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#2000

CVPR
#2000

CVPR 2014 Submission #2000. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Estimated spatial filters
Our dataset of extended relations Basic [Tian’12]

above across from behind below in in front inside left right on under above below

Table 1: Visualization of estimated spatial filters. Compositional refers to the spatial filters estimated from ground truth object detections.
Structured refers to the spatial filters estimated from trained detectors.

architecture is capable of working with little supervision as
spatial filters are either learnt or estimated from data. More-
over, we have achieved results on par with the state-of-the-
art on the structured queries under weaker design assump-
tions. Latter enables easy extension to dataset with new
spatial prepositions as the representation of new relations
is based on data. Finally, we have shown that our architec-
ture is capable of learning on more challenging structured
queries.

In the closest future, we envision bigger progress on
the image retrieval task with architectures capable of work-
ing with richer subset of natural languages. We believe,
our architecture makes a significant step towards this direc-
tion. Therefore we will make our source code together with
dataset publicly available at time of publication.

References
[1] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,

G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.
Theano: a CPU and GPU math expression compiler. In Pro-
ceedings of the Python for Scientific Computing Conference
(SciPy), 2010.

[2] Çaglar Gülçehre and Y. Bengio. Knowledge matters: Impor-
tance of prior information for optimization. CoRR, 2013.

[3] M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Ex-
ploiting hierarchical context on a large database of object
categories. In IEEE Conference on Computer VIsion and
Pattern Recognition (CVPR), 2010.

[4] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vin-
cent, and S. Bengio. Why does unsupervised pre-training
help deep learning? JMLR, 11:625–660, 2010.

[5] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young,
C. Rashtchian, J. Hockenmaier, and D. Forsyth. Every pic-
ture tells a story: Generating sentences from images. In
ECCV, pages 15–29. 2010.

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(9):1627–1645, 2010.

[7] D. Klein and C. D. Manning. Accurate unlexicalized parsing.
In ACL, pages 423–430, 2003.

[8] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In NIPS,
pages 1106–1114, 2012.

[9] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg,
and T. L. Berg. Baby talk: Understanding and generat-
ing simple image descriptions. In CVPR, pages 1601–1608,
2011.

[10] T. Lan, W. Yang, Y. Wang, and G. Mori. Image retrieval with
structured object queries using latent ranking svm. In ECCV,
pages 129–142. 2012.

[11] Y. LeCun, L. Bottou, G. Orr, and K. Müller. Efficient back-
prop. Neural networks: Tricks of the trade, pages 546–546,
1998.

[12] L.-J. Li, H. Su, E. P. Xing, and L. Fei-Fei. Object bank: A
high-level image representation for scene classification and
semantic feature sparsification. NIPS, 2010.

[13] P. Liang, M. I. Jordan, and D. Klein. Learning dependency-
based compositional semantics. In ACL, pages 590–599,
2011.

[14] C. D. Manning and H. Schütze. Foundations of statistical
natural language processing. MIT press, 1999.

[15] C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and
D. Fox. A joint model of language and perception for
grounded attribute learning. In ICML, 2013.

[16] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spa-
tial matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2007.

[17] B. Siddiquie, R. S. Feris, and L. S. Davis. Image ranking
and retrieval based on multi-attribute queries. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, 2011.

[18] G. Socher, G. Sagerer, and P. Perona. Bayesian reasoning
on qualitative descriptions from images and speech. Image
Vision Computing, 2000.

[19] R. Socher, C. C. Lin, A. Y. Ng, and C. D. Manning. Pars-
ing natural scenes and natural language with recursive neural
networks. In ICML, 2011.

[20] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the
importance of initialization and momentum in deep learning.

[21] S. Tellex, T. Kollar, G. Shaw, N. Roy, and D. Roy. Grounding
spatial language for video search. In ICMI, 2010.

[22] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and composing robust features with denoising au-
toencoders. In ICML, pages 1096–1103, 2008.

7

Spatial reasoning

Natural language understanding

M. Malinowski | Question Answering

Outline

3

State-of-the-art

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

Challenges

Natural Language Understanding!

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}

^ y = GB ^ in-rel(y, z) ^ z = NC
What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

Two extremes on language understanding!

Queen

King

M. Malinowski | Question Answering 4

A Joint Model of Language and Perception for Grounded Attribute Learning

We evaluate this approach on data gathered on Ama-
zon Mechanical Turk, in which people describe sets of
objects on a table. Experiments demonstrate that the
joint learning approach can e↵ectively extend the set
of grounded concepts in an incomplete model initial-
ized with supervised training on a small dataset. This
provides a simple mechanism for learning vocabulary
in a physical environment.

Figure 1. An example of an RGB-D object identification
scene. Columns on the right show example segments, iden-
tified as positive (far right) and negative (center).

2. Overview of the Approach

Problem We wish to learn a joint language and per-
ception model for the object selection task. The goal
is to automatically map a natural language sentence
x and a set of scene objects O to the subset G ✓ O
of objects described by x. The left panel of Fig. 1
shows an example scene. Here, O is the set of objects
present in this scene. The individual objects o 2 O are
extracted from the scene via segmentation (the right
panel of Fig. 1 shows example segments). Given the
sentence x =“Here are the yellow ones,” the goal is to
select the five yellow objects for the named set G.

Model Components Given a sentence and seg-
mented scene objects, we learn a distribution P (G |
x, O) over the selected set. Our approach combines
recent models of language and vision, including:

(1) A semantic parsing model that defines P (z|x), a
distribution over logical meaning representations z for
each sentence x. In our running example, the desired
representation z = �x.color(x, yellow) is a lambda-
calculus expression that defines a set of objects that
are yellow. For this task, we build on an existing se-
mantic parsing model (Kwiatkowski et al., 2011).

(2) A set of visual attribute classifiers C, where each
classifier c 2 C defines a distribution P (c = true|o)
of the classifier returning true for each possible object
o 2 O in the scene. For example, there would be a
unique classifier c 2 C for each possible color or shape
an object can have. We use logistic regression to train

classifiers on color and shape features extracted from
object segments recorded using a Kinect depth camera.

Joint Model We combine these language and vision
models in two ways. First, we introduce an explicit
model of alignment between the logical constants in
the logical form z and classifiers in the set C. This
alignment would, for example, enable us to learn that
the logical constant yellow should be paired with a
classifier c 2 C that fires on yellow objects.

Next, we introduce an execution model that allows
us to determine what scene objects in O would be
selected by a logical expression z, given the classi-
fiers in C. This allows us to, for example, execute
�x.color(x, green)^shape(x, triangle) by testing all of
the objects with the appropriate classifiers (for green
and triangle), then selecting objects on which both
classifiers return true. This execution model includes
uncertainty from the semantic parser P (z|x), classifier
confidences P (c = true|o), and a deterministic ground-
truth constraint that encodes what objects are actually
intended to be selected. Full details are in Sec. 5.

Model Learning We present an approach that
learns the meaning of new words from a dataset D =
{(x

i

, O
i

, G
i

) | i = 1 . . . n}, where each example i con-
tains a sentence x

i

, the objects O
i

, and the selected
set G

i

. This setup is an abstraction of the situa-
tion where a teacher mentions x

i

while pointing to
the objects G

i

✓ O
i

she describes. As described in
detail in Sec. 6, learning proceeds in an online, EM-
like fashion by repeatedly estimating expectations over
the latent logical forms z

i

and the outputs of the clas-
sifiers c 2 C, then using these expectations to update
the parameters of the component models for language
P (z|x) and visual classification P (c|o). To bootstrap
the learning approach, we first train a limited language
and perception system in a fully supervised way: in
this stage, each example additionally contains labeled
logical meaning expressions and classifier outputs, as
described in Sec. 6.

3. Related Work

To the best of our knowledge, this paper presents the
first approach for jointly learning visual classifiers and
semantic parsers, to produce rich, compositional mod-
els that span directly from sensors to meaning. How-
ever, there is significant related work on the model
components, and on grounded learning in general.

Vision Current state-of-the-art object recognition
systems (Felzenszwalb et al., 2009; Yang et al., 2009)
are based on local image descriptors, for example
SIFT over images (Lowe, 2004) and Spin Images over

C. Matuszek, et. al. “A Joint Model of
Language and Perception Grounded
Attribute Learning” ICML 2012

From language grounding to question answeringEnvironment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

J. Krishnamurthy, et. al. “Jointly Learning to Parse and Perceive: Connecting Natural Language to
the Physical World” TACL 2013

mug in front of the monitor;mug1;2;(lambda $x (exists
$y (and (mug $x) (front-rel $x $y) (monitor $y))))

• More real-world images
• More categories
• More questions, answers
• More question types
• No logical forms

• Different than grounding
• ‘Social consensus’, not 

‘connecting to the  
physical world’

• Latent motivations of  
the questioner

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

QA: (what is beneath the candle holder,
decorative plate)!
Some annotators use variations on spatial
relations that are similar, e.g. ‘beneath’ is
closely related to ‘below’.!!
QA: (what is in front of the wall divider?,
cabinet)  
Annotators use additional properties to
clarify object references (i.e. wall divider).
Moreover, the perspective plays an
important role in these spatial relations
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require detection
of states ‘light on or off’  

Q: what is at the back side of the sofas?!
Annotators use wide range spatial relations,
such as ‘backside’ which use a object-
centric.

QA1: (what is in front of the curtain behind
the armchair?, guitar)!!
QA2: (what is in front of the curtain?,
guitar)!!
Spatial relations matter more in complex
environments where reference resolution
becomes more relevant. In cluttered scenes,
pragmatism starts playing a more important
role

The annotators are using different names to
call the same things. The names of the
brown object near the bed include ‘night
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of
image, are severely occluded or truncated.
Yet, the annotators refer to them in the
questions.

QA: (What is behind the table?, window)!
Spatial relation like ‘behind’ are dependent
on the reference frame. Here the annotator
uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense
knowledge for amodal completion. Here the
annotator infers the 8th drawer from the
context

QA: (What is the object on the counter in
the corner?, microwave)!
References like ‘corner’ are difficult to
resolve given current computer vision
models. Yet such scene features are
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is not
well captured by current vision techniques.
Annotators use such attributes frequently
for disambiguation.!

QA: (What is the shape of the green
chair?, horse shaped)!
In this example, an annotator refers to a
“horse shaped chair” which requires a quite
abstract reasoning about the shapes.!

QA: (Where is oven?, on the right side of
refrigerator)!
On some occasions, the annotators prefer to
use more complex responses. With spatial
relations, we can increase the answer’s
precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not
clearly visible, yet captured by the annotator.!

Figure 4: Examples of human generated question-answer pairs illustrating the associated challenges. In the
descriptions we use following notation: ’A’ - answer, ’Q’ - question, ’QA’ - question-answer pair.

● ● ● ● ● ●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

Threshold

W
U
PS

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●

● ●

HumanQA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HumanSeg, Single, 894
HumanSeg, Single, 37
AutoSeg, Single, 37
AutoSeg, Multi, 37
Human Baseline, 894
Human Baseline, 37

Figure 5: WUPS scores for different thresholds.

synthetic question-answer pairs (SynthQA)
Segmentation World(s) # classes Accuracy

HumanSeg Single with Neg. 3 37 56.0%
HumanSeg Single 37 59.5%
AutoSeg Single 37 11.25%
AutoSeg Multi 37 13.75%

Table 3: Accuracy results for the experiments with syn-
thetic question-answer pairs.

Human question-answer pairs (HumanQA)
Segmentation World(s) #classes Accuracy WUPS at 0.9 WUPS at 0

HumanSeg Single 894 7.86% 11.86% 38.79%
HumanSeg Single 37 12.47% 16.49% 50.28%
AutoSeg Single 37 9.69% 14.73% 48.57%
AutoSeg Multi 37 12.73% 18.10% 51.47%

Human Baseline 894 50.20% 50.82% 67.27%
Human Baseline 37 60.27% 61.04% 78.96%

Table 4: Accuracy and WUPS scores for the experiments with human question-answer pairs. We show WUPS
scores at two opposite sides of the WUPS spectrum.

Q: What is on the right side of the table?!
H: chair  
M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
C: blinds!

!
Q: How many chairs are at the table?!
H: wall 
M: 4!
C: chair

Q: What is the object on the chair?!
H: pillow!
M: floor, wall!
C: wall

Q: What is on the right side of cabinet?!
H: picture 
M: bed!
C: bed

Q: What is on the wall?!
H: mirror!
M: bed!
C: picture

Q: What is behind the television?!
H: lamp  
M: brown, pink, purple!
C: picture

Q: What is in front of television?!
H: pillow!
M: chair!
C: picture

Figure 6: Questions and predicted answers. Notation: ’Q’ - question, ’H’ - architecture based on human
segmentation, ’M’ - architecture with multiple worlds, ’C’ - most confident architecture, ’()’ - no answer. Red
color denotes correct answer.

8

N. Silberman, et. al. NYU Depth Dataset V2 ECCV 2012

M. Malinowski | Question Answering

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Scene
analysis

sofa (1,brown, image 1, X,Y,Z)

chair (1,brown, image 4, X,Y,Z)
chair (2,brown, image 4, X,Y,Z)

table (1,brown, image 1,X,Y,Z)
wall (1,white, image 1, X,Y,Z)
bed (1, white, image 2 X,Y,Z)

chair (1,brown, image 5, X,Y,Z)

…
W
world

Q
question

A

answer

Semantic
parsing T

logical
form

Semantic
evaluation

W
latent
worlds

Q
question

A

answer

Semantic
parsing T

logical
form

S

S

semantic 
segmentation

single  
world"

approach

multi-world"
approach

Semantic
evaluation

Figure 1: Overview of our approach to question answering with multiple latent worlds in contrast to single
world approach.

�W(T)] with the evaluation function �W , that evaluates a logical form on the world W . Follow-
ing [1] we use DCS Trees that yield the following recursive evaluation function �W : �W(T) :=T

d

j

{v : v 2 �W(p), t 2 �W(T
j

), R
j

(v, t)} where T := hp, (T1, R1), (T2, R2), ..., (Td

, R
d

)i is
the semantic tree with a predicate p associated with the current node, its subtrees T1, T2, ..., Td

, and
relations R

j

that define the relationship between the current node and a subtree T
j

.

The distribution over logical forms is modeled by a log-linear distribution P (T |Q) /
exp(✓T�(Q, T)) with features � measuring compatibility between Q and T and parameters ✓ learnt
from training data. The model learns by alternating between searching over a restricted space of
valid trees and gradient descent updates of the model parameters ✓. For a more detailed exposition,
we refer the reader to [1].

Since the method is agnostic to the choice of the knowledge representation W , it can be used for the
grounding problem with the image facts (middle and top parts of Figure 1) as demonstrated by [5].
In the paper, we give a special name to such worlds - perceived worlds.

Question answering on real-world images based on a perceived world Similar to [5], we
extend the work of [1] to operate now on what we call perceived world W . This still cor-
responds the single world approach in our overview Figure 1. However our world is now
populated with “facts” derived from automatic, semantic image segmentations S and we also
define predicates that are spatial relations in visual scenes. Therefore, we build this world
by running a state-of-the-art semantic segmentation algorithm [15] over the images, collect-
ing the recognized information about objects such as object class, 3D position, and color

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

(a) Sampled worlds.

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

(b) Object’s coordinates.

Figure 2: Fig. 2a shows a few sampled worlds. In the clock-wise order: original picture, most confident world,
and three possible worlds. Although, at first glance the most confident world seems to be a reasonable approach,
our experiments shows opposite - we can benefit from imperfect but multiple worlds. Fig. 2b shows object’s
coordinates (original and Z, Y , X images in the clock-wise order), which better represent the spatial location
of the objects than the image coordinates.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Predicate Definition
closeAbove(A, B) above(A, B) and (Y

min

(B) < Y
max

(A) + ✏)
closeLeftOf(A, B) leftOf(A, B) and (X

min

(B) < X
max

(A) + ✏)
closeInFrontOf(A, B) inFrontOf(A, B) and (Z

min

(B) < Z
max

(A) + ✏)
X

aux

(A, B) X
mean

(A) < X
max

(B) and X
min

(B) < X
mean

(A)

Z
aux

(A, B) Z
mean

(A) < Z
max

(B) and Z
min

(B) < Z
mean

(A)

h
aux

(A, B) closeAbove(A, B) or closeBelow(A, B)

v
aux

(A, B) closeLeftOf(A, B) or closeRightOf(A, B)

au
xi

lia
ry

re
la

tio
ns

d
aux

(A, B) closeInFrontOf(A, B) or closeBehind(A, B)

leftOf(A, B) X
mean

(A) < X
mean

(B))

above(A, B) Y
mean

(A) < Y
mean

(B)

inFrontOf(A, B) Z
mean

(A) < Z
mean

(B))

sp
at

ia
l

on(A, B) closeAbove(A, B) and Z
aux

(A, B) and X
aux

(A, B)

close(A, B) h
aux

(A, B) or v
aux

(A, B) or d
aux

(A, B)

Table 1: Predicates defining spatial relations between A and B. Auxiliary relations define actual spatial re-
lations. The Y axis points downwards, functions X

max

, X
min

, ... take appropriate values from the tuple
predicate, and ✏ is a ’small’ amount. Symmetrical relations such as rightOf , below, behind, etc. can readily
be defined in terms of other relations (i.e. below(A,B) = above(B,A)).

(Figure 1 - middle part). Every object hypothesis is therefore represented as an n-tuple:
predicate(instance id, image id, color, spatial loc) where predicate 2 {bag, bed, books, ...},
instance id is the object’s id, image id is id of the image containing the object, color is esti-
mated color of the object [16], and spatial loc is the object’s position in the image. Latter is
represented as (X

min

, X
max

, X
mean

, Y
min

, Y
max

, Y
mean

, Z
min

, Z
max

, Z
mean

) and defines mini-
mal, maximal, and mean location of the object along X, Y, Z axes. To obtain the coordinates we
fit axis parallel cuboids to the cropped 3d objects based on the semantic segmentation. Note that
the X, Y, Z coordinate system is aligned with direction of gravity [15]. As shown in Figure 2b, this
is a more meaningful representation of the object’s coordinates over simple image coordinates. In
training we use facts from all training images, whereas in test case only facts from the test image.

We realize that the skilled use of spatial relations is a complex task and grounding spatial relations is
a research thread on its own (e.g. [17] and [18]). For our purposes, we focus on predefined relations
defined in Table 1, while the association of them as well as the object classes are still dealt within
the question answering architecture.

Multi-worlds approach for combining uncertain visual perception and symbolic reasoning
Up to now, we have considered the output of the semantic segmentation as “hard facts”. We now
draw on ideas from probabilistic databases [14] and propose a multi-world approach as outlined
in the lower part of Figure 1 that takes the uncertainty in the segmentation of the visual input into
account by marginalizing over multiple possible worlds W derived from the segmentation S . The
posterior over the answer A given question Q and semantic segmentation S of the image is calcu-
lated according to a Bayesian formulation by marginalizing over the latent worlds W in addition to
the logical forms T :

P (A | Q, S) =
X

W

X

T
P (A | W, T)P (W | S) P (T | Q) (2)

The semantic segmentation of the image is a set of segments s
i

with the associated probabilities
p
ij

over the C object categories c
j

. More precisely S = {(s1, L1), (s2, L2), ..., (sk, Lk

)} where
L
i

= {(c
j

, p
ij

)}C
j=1, P (s

i

= c
j

) = p
ij

, and k is the number of segments of given image. Let
ˆS
f

=

�
(s1, c

f(1)), (s2, cf(2)), ..., (sk, cf(k)))

be an assignment of the categories into segments of
the image according to the binding function f 2 F = {1, ..., C}{1,...,k}. Using such notation, for
a fixed binding function f , a world W is a set of tuples consistent with ˆS

f

, and define P (W |S) =Q
i

p(i,f(i)). Hence we have as many possible words as binding functions, that is Ck. Eq. 2 becomes
quickly intractable for k and C seen in practice, wherefore we use a sampling strategy that draws a
finite sample ~W = (W1, W2, ..., WN

) from P (·|S):

P (A | Q, S) =
1

N

NX

a=1

X

T
P (A | W

a

, T)P (T |Q) (3)

under an assumption that for each segment s
i

every object’s category c
j

is drawn independently
according to p

ij

. A few sampled perceived words are shown in Figure 2a.

4

Briefly about the approach

5

P. Liang, et. al. “Learning
dependency-based compositional
semantics” ACL 2011

S. Gupta, et. al. “Perceptual
Organization and Recognition of
Indoor Scenes from RGB-D
Images” CVPR 2013

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

Figure 3: NYU-Depth V2 dataset: image, Z axis, ground truth and predicted semantic segmentations.

Description Template Example
counting How many {object} are in {image id}? How many cabinets are in image1?

counting and colors How many {color} {object} are in {image id}? How many gray cabinets are in image1?
room type Which type of the room is depicted in {image id}? Which type of the room is depicted in image1?

In
di

vi
du

al

superlatives What is the largest {object} in {image id}? What is the largest object in image1?
counting and colors How many {color} {object}? How many black bags?

negations type 1 Which images do not have {object}? Which images do not have sofa?

se
t

negations type 2 Which images are not {room type}? Which images are not bedroom?
negations type 3 Which images have {object} but do not have a {object}? Which images have desk but do not have a lamp?

Table 2: Synthetic question-answer pairs. The questions can be about individual images or the sets of images.

Regarding the computational efficiency, computing
P

T P (A | W
i

, T)P (T | Q) can be done inde-
pendently for every W

i

, and therefore in parallel without any need for synchronization. Since for
small N the computational costs of summing up computed probabilities is marginal, the overall cost
is about the same as single inference modulo parallelism. The presented multi-world approach to
question answering on real-world scenes is still an end-to-end architecture that is trained solely on
the question-answer pairs.

Implementation and Scalability For worlds containing many facts and spatial relations the in-
duction step becomes computationally intractable. Therefore we use a batch-based approximation
in such situations. Every image induces a set of facts that we call a batch of facts. For every test
batch of facts, we find k nearest neighbors in the space of training batches with a boolean variant
of TF.IDF [19] as a similarity measure. This is equivalent to building a training world Wtrain from
k images with most similar content to the perceived world W in the test image. We have experi-
mentally found that k = 3 makes a good trade-off between the accuracy and complexity of the task.
For all our multi-worlds experiments we use 25 worlds. Dataset and code will be released at time of
publication.

4 Experiments
4.1 DAtaset for QUestion Answering on Real-world images (DAQUAR)
Images and Semantic Segmentation Our new dataset for question answering is build on top of
the NYU-Depth V2 dataset [6]. NYU-Depth V2 contains 1449 RGB and depth images together
with annotated semantic segmentations (Figure 3) where every pixel is labeled into some object
class. Originally 894 classes are considered. According to [15], we preprocess the data to obtain
canonical views of the scenes and use X , Y , Z coordinates from the depth sensor to define spatial
placement of the objects in 3D. To investigate the impact of uncertainty in the visual analysis of the
scenes, we also employ computer vision techniques for automatic semantic segmentation. We use a
state-of-the-art scene analysis method [15] which maps every pixel into 40 classes: 37 informative
object classes as well as ’other structure’, ’other furniture’ and ’other prop’. We ignore the latter
three. We use the same data split as [15]: 795 training and 654 test images. In order to use our
spatial representation on the image content, we fit 3d cuboids to the segmentations.
New dataset of questions and answers In the spirit of a visual turing test, we collect question
answer pairs from human annotators for the NYU dataset. In our work, we consider two types of the
annotations: synthetic and human. The synthetic question-answer pairs are automatically generated
question-answer pairs, which are based on the templates shown in Table 2. These templates are
then instantiated with facts from the database. We also collect 12468 human question-answer pairs

that are produced by annotators instructed to ask questions that can solely be answered from the

5

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

Figure 3: NYU-Depth V2 dataset: image, Z axis, ground truth and predicted semantic segmentations.

Description Template Example
counting How many {object} are in {image id}? How many cabinets are in image1?

counting and colors How many {color} {object} are in {image id}? How many gray cabinets are in image1?
room type Which type of the room is depicted in {image id}? Which type of the room is depicted in image1?

In
div

id
ua

l

superlatives What is the largest {object} in {image id}? What is the largest object in image1?
counting and colors How many {color} {object}? How many black bags?

negations type 1 Which images do not have {object}? Which images do not have sofa?

se
t

negations type 2 Which images are not {room type}? Which images are not bedroom?
negations type 3 Which images have {object} but do not have a {object}? Which images have desk but do not have a lamp?

Table 2: Synthetic question-answer pairs. The questions can be about individual images or the sets of images.

Regarding the computational efficiency, computing
P

T P (A | W
i

, T)P (T | Q) can be done inde-
pendently for every W

i

, and therefore in parallel without any need for synchronization. Since for
small N the computational costs of summing up computed probabilities is marginal, the overall cost
is about the same as single inference modulo parallelism. The presented multi-world approach to
question answering on real-world scenes is still an end-to-end architecture that is trained solely on
the question-answer pairs.

Implementation and Scalability For worlds containing many facts and spatial relations the in-
duction step becomes computationally intractable. Therefore we use a batch-based approximation
in such situations. Every image induces a set of facts that we call a batch of facts. For every test
batch of facts, we find k nearest neighbors in the space of training batches with a boolean variant
of TF.IDF [19] as a similarity measure. This is equivalent to building a training world Wtrain from
k images with most similar content to the perceived world W in the test image. We have experi-
mentally found that k = 3 makes a good trade-off between the accuracy and complexity of the task.
For all our multi-worlds experiments we use 25 worlds. Dataset and code will be released at time of
publication.

4 Experiments
4.1 DAtaset for QUestion Answering on Real-world images (DAQUAR)
Images and Semantic Segmentation Our new dataset for question answering is build on top of
the NYU-Depth V2 dataset [6]. NYU-Depth V2 contains 1449 RGB and depth images together
with annotated semantic segmentations (Figure 3) where every pixel is labeled into some object
class. Originally 894 classes are considered. According to [15], we preprocess the data to obtain
canonical views of the scenes and use X , Y , Z coordinates from the depth sensor to define spatial
placement of the objects in 3D. To investigate the impact of uncertainty in the visual analysis of the
scenes, we also employ computer vision techniques for automatic semantic segmentation. We use a
state-of-the-art scene analysis method [15] which maps every pixel into 40 classes: 37 informative
object classes as well as ’other structure’, ’other furniture’ and ’other prop’. We ignore the latter
three. We use the same data split as [15]: 795 training and 654 test images. In order to use our
spatial representation on the image content, we fit 3d cuboids to the segmentations.
New dataset of questions and answers In the spirit of a visual turing test, we collect question
answer pairs from human annotators for the NYU dataset. In our work, we consider two types of the
annotations: synthetic and human. The synthetic question-answer pairs are automatically generated
question-answer pairs, which are based on the templates shown in Table 2. These templates are
then instantiated with facts from the database. We also collect 12468 human question-answer pairs

that are produced by annotators instructed to ask questions that can solely be answered from the

5

J. Weijer, et. al. “Learning Color Names
for Real World Applications” TIP 2009

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, DATE 2

Fig. 1. Google-retrieved examples for color names. The red bounding boxes indicate false positives. An image can be retrieved

with various color names, such as the flower image which appears in the red and the yellow set.

One of the most influential works in color naming is the linguistic study of Berlin and Kay [3]

on basic color terms. They are defined as those color names in a language which are applied to

diverse classes of objects, whose meaning is not subsumable under one of the other basic color

terms, and which are used consistently and with consensus by most speakers of the language.

Subjects of different languages where asked to identify prototypes (best examples) of the color

names on a board with 329 color chips. Basic color names were found to be shared between

languages. However the number of basic terms varies from two in some Aboriginal languages

to twelve in Russian. In this paper, we use the eleven basic color terms of the English language:

black, blue, brown, grey, green, orange, pink, purple, red, white, and yellow.

To use color naming in computer vision requires a mapping between RGB values and color

names. Generally this mapping is inferred from a labelled set [4], [5], [6], [7], [8], [9], [10].

Multiple test subjects are asked to label hundreds of color chips within a well-defined experi-

mental setup. The colors are to be chosen from a preselected set of color names (predominantly

the set of 11 basic color terms [6], [8], [9], [10]). From this labelled set of color chips the

mapping from RGB values to color names is derived. Throughout the paper we will refer to this

methodology of color naming as chip-based color naming. Several of these papers have reported

results of applying chip-based color names on real-world images [11], [6], [7], [8], [9], [12].

Although we do not wish to cast doubt on the usefulness of chip-based color naming within the

linguistic and color science fields, we do question to what extent the labelling of isolated color

March 4, 2009 DRAFT

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, DATE 2

Fig. 1. Google-retrieved examples for color names. The red bounding boxes indicate false positives. An image can be retrieved

with various color names, such as the flower image which appears in the red and the yellow set.

One of the most influential works in color naming is the linguistic study of Berlin and Kay [3]

on basic color terms. They are defined as those color names in a language which are applied to

diverse classes of objects, whose meaning is not subsumable under one of the other basic color

terms, and which are used consistently and with consensus by most speakers of the language.

Subjects of different languages where asked to identify prototypes (best examples) of the color

names on a board with 329 color chips. Basic color names were found to be shared between

languages. However the number of basic terms varies from two in some Aboriginal languages

to twelve in Russian. In this paper, we use the eleven basic color terms of the English language:

black, blue, brown, grey, green, orange, pink, purple, red, white, and yellow.

To use color naming in computer vision requires a mapping between RGB values and color

names. Generally this mapping is inferred from a labelled set [4], [5], [6], [7], [8], [9], [10].

Multiple test subjects are asked to label hundreds of color chips within a well-defined experi-

mental setup. The colors are to be chosen from a preselected set of color names (predominantly

the set of 11 basic color terms [6], [8], [9], [10]). From this labelled set of color chips the

mapping from RGB values to color names is derived. Throughout the paper we will refer to this

methodology of color naming as chip-based color naming. Several of these papers have reported

results of applying chip-based color names on real-world images [11], [6], [7], [8], [9], [12].

Although we do not wish to cast doubt on the usefulness of chip-based color naming within the

linguistic and color science fields, we do question to what extent the labelling of isolated color

March 4, 2009 DRAFT

Scene analysis

+

M. Malinowski | Question Answering

Outline

6

State-of-the-art

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

Challenges

Natural Language Understanding!

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}

^ y = GB ^ in-rel(y, z) ^ z = NC
What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

Two extremes on language understanding!

Queen

King

M. Malinowski | Question Answering 7

Challenges

QA: (what is beneath the candle holder,
decorative plate)!
Some annotators use variations on spatial
relations that are similar, e.g. ‘beneath’ is
closely related to ‘below’.!!
QA: (what is in front of the wall
divider?, cabinet)  
Annotators use additional properties to
clarify object references (i.e. wall
divider). Moreover, the perspective plays
an important role in these spatial relations
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require
detection of states ‘light on or off’  

Q: what is at the back side of the sofas?!
Annotators use wide range spatial
relations, such as ‘backside’ which is
object-centric.

QA1: (what is in front of the curtain
behind the armchair?, guitar)!!
QA2: (what is in front of the curtain?,
guitar)!!
Spatial relations matter more in complex
environments where reference resolution
becomes more relevant. In cluttered scenes,
pragmatism starts playing a more important
role

The annotators are using different names
to call the same things. The names of the
brown object near the bed include ‘night
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of
image, are severely occluded or truncated.
Yet, the annotators refer to them in the
questions.

QA: (What is behind the table?,
window)!
Spatial relation like ‘behind’ are
dependent on the reference frame. Here
the annotator uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense
knowledge for amodal completion. Here
the annotator infers the 8th drawer from
the context

QA: (What is the object on the counter
in the corner?, microwave)!
References like ‘corner’ are difficult to
resolve given current computer vision
models. Yet such scene features are
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is
not well captured by current vision
techniques. Annotators use such attributes
frequently for disambiguation.!

QA: (What is above the desk in front of
the scissors?, hole puncher)!
It is difficult to find the scissors solely with
the appearance-based methods.!

QA: (Where is oven?, on the right side
of refrigerator)!
On some occasions, the annotators prefer
to use more complex responses. With
spatial relations, we can increase the
answer’s precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not
clearly visible, yet captured by the
annotator.!

M. Malinowski | Question Answering

Other challenges
• Detectors for more categories
‣ Currently 37 categories, but we need about 900

• Metric to benchmark methods
‣ Semantic boundaries between the categories becomes unclear

- carton ~ box
- cup ~ cup of coffee

‣ This suggests a metric that is built on some ontologies
- Wu-Palmer similarity on the WordNet taxonomy
- Problems with WordNet: ‘garbage bin’ doesn’t exist

‣ Takes into account ‘social consensus’
- Possible different answers
- Ongoing work

‣ Metric:
• Problems with the semantic parser

8

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

information presented in the image. They were further instructed to give answers for the provided
questions that are either basic colors [16], numbers or objects (894 categories) or sets of those.
We use 6794 training and 5674 test question-answer pairs – about 9 pairs per image on average.
The database exhibit some biases showing humans tend to focus on a few prominent objects. For
instance we have more than 400 occurrences of table and chair in the answers. In average the object’s
category occurs about 4 times in training set and about 6 times in total. Figure 4 shows example
question-answer pairs together with the corresponding image that illustrate some of the challenges
captured in this dataset.
Performance Measure While the quality of an answer that the system produces can be measured
in terms of accuracy w.r.t. the ground truth (correct/wrong), we propose, an inspired from the work
on Fuzzy Sets [21], a soft measure based on the WUP score [20], which we call WUPS (WUP Set)
score. As the number of classes grows, the semantic boundaries between them are becoming more
fuzzy. For example, both concepts ’carton’ and ’box’ have similar meaning, or ’cup’ and ’cup of
coffee’ are almost indifferent. Therefore we seek a metric that measures the quality of an answer
and penalizes naive solutions where the architecture outputs too many or too few answers. Standard
Accuracy is defined as: 1

N

P
N

i=1 1{Ai

= T i} · 100 where Ai, T i are i-th answer and ground-truth
respectively. Since both the answers may include more than one object, it is beneficial to represent it
as sets of the objects T = {t1, t2, ...}. From this point of view we have for every i 2 {1, 2, ..., N}:

1{Ai

= T i} = 1{Ai ✓ T i \ T i ✓ Ai} = min{1{Ai ✓ T i}, 1{T i ✓ Ai}} (4)

= min{
Y

a2A

i

1{a 2 T i},
Y

t2T

i

1{t 2 Ai}} ⇡ min{
Y

a2A

i

µ(a 2 T i

),
Y

t2T

i

µ(t 2 Ai

)} (5)

We use a soft equivalent of the intersection operator in Eq. 4, and a set membership measure µ,
with properties µ(x 2 X) = 1 if x 2 X , µ(x 2 X) = max

y2X

µ(x = y) and µ(x = y) 2 [0, 1],
in Eq. 5 with equality whenever µ = 1. For µ we use a variant of Wu-Palmer similarity [20, 22].
WUP(a, b) calculates similarity based on the depth of two words a and b in the taxonomy[23, 24],
and define the WUPS score:

WUPS(A, T) =

1

N

NX

i=1

min{
Y

a2A

i

max

t2T

i
WUP(a, t),

Y

t2T

i

max

a2A

i
WUP(a, t)} · 100 (6)

Empirically, we found that for a question answering task a individual WUP score of around 0.9 is
required to for a precise answers - implemented with down-weighting WUP(a, b) by one order of
magnitude (0.1 ·WUP) whenever WUP(a, b) < 0.9. Here we show some examples of the pure WUP
score to give intuitions about the range: WUP(curtain, blinds) = 0.94, WUP(carton, box) = 0.94,
WUP(stove, fire extinguisher) = 0.82. We also plot a curve over thresholds ranging from 0 to 1

(Figure 5) - requiring answers with precision ranging from low to high. Finally, we average the
WUPS score over the test examples and multiply by 100.

4.2 Quantitative results
We perform a series of experiments to highlight particular challenges like uncertain segmenta-
tions, unknown true logical forms, some linguistic phenomena as well as show the advantages of
our proposed multi-world approach. In particular, we distinguish between experiments on syn-
thetic question-answer pairs (synthQA) based on templates and those collected by annotators (Hu-
manQA), automatic scene segmentation (AutoSeg) with a computer vision algorithm [15] and hu-
man segmentations (HumanSeg) based on the ground-truth annotations in the NYU dataset as well
as single world (single) and multi-world (multi) approaches.
4.2.1 Synthetic question-answer pairs (SynthQA)
Based on human segmentations (HumanSeg, 37 classes) (1st and 2nd rows in Table 3) uses auto-
matically generated questions based on the templates from Table 2 and human segmentations. We
have generated 20 training and 40 test question-answer pairs per template category, in total 140
training and 280 such pairs (as exception negations type 1 and 2 have 10 training and 20 test exam-
ples each). This experiment shows how the architecture generalizes across similar type of questions
provided that we have human annotation of the image segments. We have further removed nega-
tions of type 3 in experiment as they have turned out to be particular computationally demanding.
Performance increases hereby from 56% to 59.9%. We are not considering negations of type 3 in
the further experiments.
Based on automatic segmentations (AutoSeg, 37 classes, single) (3rd row in Table 3) tests the ar-
chitecture based on uncertain facts obtained from automatic semantic segmentation [15] where the

6

M. Malinowski | Question Answering

Results

9

Q: What color is the bed? 
H: black, blue, …
Q: What color is the bed? 
H: blue

Q: What color is the pillow? 
H: blue
Q: What color is the pillow? 
H: red

Q: What is on the right side of the table?!
H: chair  
M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
C: blinds!

!
Q: How many chairs are at the table?!
H: wall 
M: 4!
C: chair

Q: What is the object on the chair?!
H: pillow!
M: floor, wall!
C: wall

Q: What is on the right side of cabinet?!
H: picture 
M: bed!
C: bed

Q: What is on the wall?!
H: mirror!
M: bed!
C: picture

Q: What is behind the television?!
H: lamp  
M: brown, pink, purple!
C: picture

Q: What is in front of television?!
H: pillow!
M: chair!
C: picture

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

Figure 3: NYU-Depth V2 dataset: image, Z axis, ground truth and predicted semantic segmentations.

Description Template Example
counting How many {object} are in {image id}? How many cabinets are in image1?

counting and colors How many {color} {object} are in {image id}? How many gray cabinets are in image1?
room type Which type of the room is depicted in {image id}? Which type of the room is depicted in image1?

In
di

vi
du

al

superlatives What is the largest {object} in {image id}? What is the largest object in image1?
counting and colors How many {color} {object}? How many black bags?

negations type 1 Which images do not have {object}? Which images do not have sofa?

se
t

negations type 2 Which images are not {room type}? Which images are not bedroom?
negations type 3 Which images have {object} but do not have a {object}? Which images have desk but do not have a lamp?

Table 2: Synthetic question-answer pairs. The questions can be about individual images or the sets of images.

Regarding the computational efficiency, computing
P

T P (A | W
i

, T)P (T | Q) can be done inde-
pendently for every W

i

, and therefore in parallel without any need for synchronization. Since for
small N the computational costs of summing up computed probabilities is marginal, the overall cost
is about the same as single inference modulo parallelism. The presented multi-world approach to
question answering on real-world scenes is still an end-to-end architecture that is trained solely on
the question-answer pairs.

Implementation and Scalability For worlds containing many facts and spatial relations the in-
duction step becomes computationally intractable. Therefore we use a batch-based approximation
in such situations. Every image induces a set of facts that we call a batch of facts. For every test
batch of facts, we find k nearest neighbors in the space of training batches with a boolean variant
of TF.IDF [19] as a similarity measure. This is equivalent to building a training world Wtrain from
k images with most similar content to the perceived world W in the test image. We have experi-
mentally found that k = 3 makes a good trade-off between the accuracy and complexity of the task.
For all our multi-worlds experiments we use 25 worlds. Dataset and code will be released at time of
publication.

4 Experiments
4.1 DAtaset for QUestion Answering on Real-world images (DAQUAR)
Images and Semantic Segmentation Our new dataset for question answering is build on top of
the NYU-Depth V2 dataset [6]. NYU-Depth V2 contains 1449 RGB and depth images together
with annotated semantic segmentations (Figure 3) where every pixel is labeled into some object
class. Originally 894 classes are considered. According to [15], we preprocess the data to obtain
canonical views of the scenes and use X , Y , Z coordinates from the depth sensor to define spatial
placement of the objects in 3D. To investigate the impact of uncertainty in the visual analysis of the
scenes, we also employ computer vision techniques for automatic semantic segmentation. We use a
state-of-the-art scene analysis method [15] which maps every pixel into 40 classes: 37 informative
object classes as well as ’other structure’, ’other furniture’ and ’other prop’. We ignore the latter
three. We use the same data split as [15]: 795 training and 654 test images. In order to use our
spatial representation on the image content, we fit 3d cuboids to the segmentations.
New dataset of questions and answers In the spirit of a visual turing test, we collect question
answer pairs from human annotators for the NYU dataset. In our work, we consider two types of the
annotations: synthetic and human. The synthetic question-answer pairs are automatically generated
question-answer pairs, which are based on the templates shown in Table 2. These templates are
then instantiated with facts from the database. We also collect 12468 human question-answer pairs

that are produced by annotators instructed to ask questions that can solely be answered from the

5

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

QA: (what is beneath the candle holder,
decorative plate)!
Some annotators use variations on spatial
relations that are similar, e.g. ‘beneath’ is
closely related to ‘below’.!!
QA: (what is in front of the wall divider?,
cabinet)  
Annotators use additional properties to
clarify object references (i.e. wall divider).
Moreover, the perspective plays an
important role in these spatial relations
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require detection
of states ‘light on or off’  

Q: what is at the back side of the sofas?!
Annotators use wide range spatial relations,
such as ‘backside’ which use a object-
centric.

QA1: (what is in front of the curtain behind
the armchair?, guitar)!!
QA2: (what is in front of the curtain?,
guitar)!!
Spatial relations matter more in complex
environments where reference resolution
becomes more relevant. In cluttered scenes,
pragmatism starts playing a more important
role

The annotators are using different names to
call the same things. The names of the
brown object near the bed include ‘night
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of
image, are severely occluded or truncated.
Yet, the annotators refer to them in the
questions.

QA: (What is behind the table?, window)!
Spatial relation like ‘behind’ are dependent
on the reference frame. Here the annotator
uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense
knowledge for amodal completion. Here the
annotator infers the 8th drawer from the
context

QA: (What is the object on the counter in
the corner?, microwave)!
References like ‘corner’ are difficult to
resolve given current computer vision
models. Yet such scene features are
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is not
well captured by current vision techniques.
Annotators use such attributes frequently
for disambiguation.!

QA: (What is the shape of the green
chair?, horse shaped)!
In this example, an annotator refers to a
“horse shaped chair” which requires a quite
abstract reasoning about the shapes.!

QA: (Where is oven?, on the right side of
refrigerator)!
On some occasions, the annotators prefer to
use more complex responses. With spatial
relations, we can increase the answer’s
precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not
clearly visible, yet captured by the annotator.!

Figure 4: Examples of human generated question-answer pairs illustrating the associated challenges. In the
descriptions we use following notation: ’A’ - answer, ’Q’ - question, ’QA’ - question-answer pair.

● ● ● ● ● ●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

Threshold

W
U
PS

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●

● ●

HumanQA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HumanSeg, Single, 894
HumanSeg, Single, 37
AutoSeg, Single, 37
AutoSeg, Multi, 37
Human Baseline, 894
Human Baseline, 37

Figure 5: WUPS scores for different thresholds.

synthetic question-answer pairs (SynthQA)
Segmentation World(s) # classes Accuracy

HumanSeg Single with Neg. 3 37 56.0%
HumanSeg Single 37 59.5%
AutoSeg Single 37 11.25%
AutoSeg Multi 37 13.75%

Table 3: Accuracy results for the experiments with syn-
thetic question-answer pairs.

Human question-answer pairs (HumanQA)
Segmentation World(s) #classes Accuracy WUPS at 0.9 WUPS at 0

HumanSeg Single 894 7.86% 11.86% 38.79%
HumanSeg Single 37 12.47% 16.49% 50.28%
AutoSeg Single 37 9.69% 14.73% 48.57%
AutoSeg Multi 37 12.73% 18.10% 51.47%

Human Baseline 894 50.20% 50.82% 67.27%
Human Baseline 37 60.27% 61.04% 78.96%

Table 4: Accuracy and WUPS scores for the experiments with human question-answer pairs. We show WUPS
scores at two opposite sides of the WUPS spectrum.

Q: What is on the right side of the table?!
H: chair  
M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
C: blinds!

!
Q: How many chairs are at the table?!
H: wall 
M: 4!
C: chair

Q: What is the object on the chair?!
H: pillow!
M: floor, wall!
C: wall

Q: What is on the right side of cabinet?!
H: picture 
M: bed!
C: bed

Q: What is on the wall?!
H: mirror!
M: bed!
C: picture

Q: What is behind the television?!
H: lamp  
M: brown, pink, purple!
C: picture

Q: What is in front of television?!
H: pillow!
M: chair!
C: picture

Figure 6: Questions and predicted answers. Notation: ’Q’ - question, ’H’ - architecture based on human
segmentation, ’M’ - architecture with multiple worlds, ’C’ - most confident architecture, ’()’ - no answer. Red
color denotes correct answer.

8

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

QA: (what is beneath the candle holder,
decorative plate)!
Some annotators use variations on spatial
relations that are similar, e.g. ‘beneath’ is
closely related to ‘below’.!!
QA: (what is in front of the wall divider?,
cabinet)  
Annotators use additional properties to
clarify object references (i.e. wall divider).
Moreover, the perspective plays an
important role in these spatial relations
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require detection
of states ‘light on or off’  

Q: what is at the back side of the sofas?!
Annotators use wide range spatial relations,
such as ‘backside’ which use a object-
centric.

QA1: (what is in front of the curtain behind
the armchair?, guitar)!!
QA2: (what is in front of the curtain?,
guitar)!!
Spatial relations matter more in complex
environments where reference resolution
becomes more relevant. In cluttered scenes,
pragmatism starts playing a more important
role

The annotators are using different names to
call the same things. The names of the
brown object near the bed include ‘night
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of
image, are severely occluded or truncated.
Yet, the annotators refer to them in the
questions.

QA: (What is behind the table?, window)!
Spatial relation like ‘behind’ are dependent
on the reference frame. Here the annotator
uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense
knowledge for amodal completion. Here the
annotator infers the 8th drawer from the
context

QA: (What is the object on the counter in
the corner?, microwave)!
References like ‘corner’ are difficult to
resolve given current computer vision
models. Yet such scene features are
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is not
well captured by current vision techniques.
Annotators use such attributes frequently
for disambiguation.!

QA: (What is the shape of the green
chair?, horse shaped)!
In this example, an annotator refers to a
“horse shaped chair” which requires a quite
abstract reasoning about the shapes.!

QA: (Where is oven?, on the right side of
refrigerator)!
On some occasions, the annotators prefer to
use more complex responses. With spatial
relations, we can increase the answer’s
precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not
clearly visible, yet captured by the annotator.!

Figure 4: Examples of human generated question-answer pairs illustrating the associated challenges. In the
descriptions we use following notation: ’A’ - answer, ’Q’ - question, ’QA’ - question-answer pair.

● ● ● ● ● ●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

Threshold

W
U
PS

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●

● ●

HumanQA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HumanSeg, Single, 894
HumanSeg, Single, 37
AutoSeg, Single, 37
AutoSeg, Multi, 37
Human Baseline, 894
Human Baseline, 37

Figure 5: WUPS scores for different thresholds.

synthetic question-answer pairs (SynthQA)
Segmentation World(s) # classes Accuracy

HumanSeg Single with Neg. 3 37 56.0%
HumanSeg Single 37 59.5%
AutoSeg Single 37 11.25%
AutoSeg Multi 37 13.75%

Table 3: Accuracy results for the experiments with syn-
thetic question-answer pairs.

Human question-answer pairs (HumanQA)
Segmentation World(s) #classes Accuracy WUPS at 0.9 WUPS at 0

HumanSeg Single 894 7.86% 11.86% 38.79%
HumanSeg Single 37 12.47% 16.49% 50.28%
AutoSeg Single 37 9.69% 14.73% 48.57%
AutoSeg Multi 37 12.73% 18.10% 51.47%

Human Baseline 894 50.20% 50.82% 67.27%
Human Baseline 37 60.27% 61.04% 78.96%

Table 4: Accuracy and WUPS scores for the experiments with human question-answer pairs. We show WUPS
scores at two opposite sides of the WUPS spectrum.

Q: What is on the right side of the table?!
H: chair  
M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
C: blinds!

!
Q: How many chairs are at the table?!
H: wall 
M: 4!
C: chair

Q: What is the object on the chair?!
H: pillow!
M: floor, wall!
C: wall

Q: What is on the right side of cabinet?!
H: picture 
M: bed!
C: bed

Q: What is on the wall?!
H: mirror!
M: bed!
C: picture

Q: What is behind the television?!
H: lamp  
M: brown, pink, purple!
C: picture

Q: What is in front of television?!
H: pillow!
M: chair!
C: picture

Figure 6: Questions and predicted answers. Notation: ’Q’ - question, ’H’ - architecture based on human
segmentation, ’M’ - architecture with multiple worlds, ’C’ - most confident architecture, ’()’ - no answer. Red
color denotes correct answer.

8

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

QA: (what is beneath the candle holder,
decorative plate)!
Some annotators use variations on spatial
relations that are similar, e.g. ‘beneath’ is
closely related to ‘below’.!!
QA: (what is in front of the wall divider?,
cabinet)  
Annotators use additional properties to
clarify object references (i.e. wall divider).
Moreover, the perspective plays an
important role in these spatial relations
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require detection
of states ‘light on or off’  

Q: what is at the back side of the sofas?!
Annotators use wide range spatial relations,
such as ‘backside’ which use a object-
centric.

QA1: (what is in front of the curtain behind
the armchair?, guitar)!!
QA2: (what is in front of the curtain?,
guitar)!!
Spatial relations matter more in complex
environments where reference resolution
becomes more relevant. In cluttered scenes,
pragmatism starts playing a more important
role

The annotators are using different names to
call the same things. The names of the
brown object near the bed include ‘night
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of
image, are severely occluded or truncated.
Yet, the annotators refer to them in the
questions.

QA: (What is behind the table?, window)!
Spatial relation like ‘behind’ are dependent
on the reference frame. Here the annotator
uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense
knowledge for amodal completion. Here the
annotator infers the 8th drawer from the
context

QA: (What is the object on the counter in
the corner?, microwave)!
References like ‘corner’ are difficult to
resolve given current computer vision
models. Yet such scene features are
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is not
well captured by current vision techniques.
Annotators use such attributes frequently
for disambiguation.!

QA: (What is the shape of the green
chair?, horse shaped)!
In this example, an annotator refers to a
“horse shaped chair” which requires a quite
abstract reasoning about the shapes.!

QA: (Where is oven?, on the right side of
refrigerator)!
On some occasions, the annotators prefer to
use more complex responses. With spatial
relations, we can increase the answer’s
precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not
clearly visible, yet captured by the annotator.!

Figure 4: Examples of human generated question-answer pairs illustrating the associated challenges. In the
descriptions we use following notation: ’A’ - answer, ’Q’ - question, ’QA’ - question-answer pair.

● ● ● ● ● ●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

Threshold

W
U
PS

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●

● ●

HumanQA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HumanSeg, Single, 894
HumanSeg, Single, 37
AutoSeg, Single, 37
AutoSeg, Multi, 37
Human Baseline, 894
Human Baseline, 37

Figure 5: WUPS scores for different thresholds.

synthetic question-answer pairs (SynthQA)
Segmentation World(s) # classes Accuracy

HumanSeg Single with Neg. 3 37 56.0%
HumanSeg Single 37 59.5%
AutoSeg Single 37 11.25%
AutoSeg Multi 37 13.75%

Table 3: Accuracy results for the experiments with syn-
thetic question-answer pairs.

Human question-answer pairs (HumanQA)
Segmentation World(s) #classes Accuracy WUPS at 0.9 WUPS at 0

HumanSeg Single 894 7.86% 11.86% 38.79%
HumanSeg Single 37 12.47% 16.49% 50.28%
AutoSeg Single 37 9.69% 14.73% 48.57%
AutoSeg Multi 37 12.73% 18.10% 51.47%

Human Baseline 894 50.20% 50.82% 67.27%
Human Baseline 37 60.27% 61.04% 78.96%

Table 4: Accuracy and WUPS scores for the experiments with human question-answer pairs. We show WUPS
scores at two opposite sides of the WUPS spectrum.

Q: What is on the right side of the table?!
H: chair  
M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
C: blinds!

!
Q: How many chairs are at the table?!
H: wall 
M: 4!
C: chair

Q: What is the object on the chair?!
H: pillow!
M: floor, wall!
C: wall

Q: What is on the right side of cabinet?!
H: picture 
M: bed!
C: bed

Q: What is on the wall?!
H: mirror!
M: bed!
C: picture

Q: What is behind the television?!
H: lamp  
M: brown, pink, purple!
C: picture

Q: What is in front of television?!
H: pillow!
M: chair!
C: picture

Figure 6: Questions and predicted answers. Notation: ’Q’ - question, ’H’ - architecture based on human
segmentation, ’M’ - architecture with multiple worlds, ’C’ - most confident architecture, ’()’ - no answer. Red
color denotes correct answer.

8

M. Malinowski | Question Answering

Outline

10

State-of-the-art

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

Challenges

Natural Language Understanding!

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}

^ y = GB ^ in-rel(y, z) ^ z = NC
What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

Two extremes on language understanding!

Queen

King

M. Malinowski | Question Answering

Natural Language Understanding

11

Words to Predicates (Lexical Semantics)

city city

state state

river river

argmax population population CA

What is the most populous city in CA ?

Lexical Triggers:

1. String match CA) CA

2. Function words (20 words)

most) argmax

3. Nouns/adjectives

city) city state river population

13

New: Dependency-Based Compositional Semantics (DCS)

most populous city in California

1

1

1

1

cc

argmax

population

2

1

CA

loc

city

Los Angeles

Advantages of DCS: nice computational, statistical, linguistic properties

4

city(california, ca, los angeles, 2966850).

city(cityid(City, St)) : − city (, St, City,)
population(cityid(City, St), Pop) : − city(, St, City, Pop)

argmax
Pop

population(X,Pop), city(X), loc(X, Y), CA(Y)

loc(cityid(City, St), stateid(State)) : − state(State, St, , , ..., , City)

state(california, ca, ..., los angeles)

M. Malinowski | Question Answering

Natural Language Understanding

12

Basic DCS Trees

DCS tree Constraints

city c 2 city

1

1

c1 = `1

loc ` 2 loc

2

1

`2 = s1

CA s 2 CA

Database

city

San Francisco

Chicago

Boston

· · ·

loc

Mount Shasta California

San Francisco California

Boston Massachusetts

· · · · · ·

CA

California

A DCS tree encodes a constraint satisfaction problem (CSP)

Computation: dynamic programming) time = O(# nodes)
6

Predicates to DCS Trees (Compositional Semantics)

Ci,j = set of DCS trees for span [i, j]

most populous city in California

i jk

Ci,k Ck,j

cc

argmax

population

1

1

2

1

CA

loc

city

1

1
cc

argmax

1

1

2

1

CA

loc

city

population

14

Constraint Satisfaction Problem

Construction Mechanism

M. Malinowski | Question Answering

Natural Language Understanding

13

Words to Predicates (Lexical Semantics)

city city

state state

river river

argmax population population CA

What is the most populous city in CA ?

Lexical Triggers:

1. String match CA) CA

2. Function words (20 words)

most) argmax

3. Nouns/adjectives

city) city state river population

13

Plan

x

capital of

California?

parameters

✓

z

1

2

1

1

CA

capital

⇤⇤

database

w

y

Sacramento

• What’s possible? z 2 ?

•
What’s probable? p(z | x, ✓)

• Learning ✓ to data

18

Learning

Objective:

max✓
P

z p(y | z, w) p(z | x, ✓)
Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓

(0, 0, . . . , 0)

enumerate/score DCS trees

19

Objective Learning

Objective:

max✓
P

z p(y | z, w) p(z | x, ✓)
Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓ k-best list

(0.2,�1.3, . . . , 0.7)

enumerate/score DCS trees

numerical optimization (L-BFGS)

tree1

tree2

tree3

tree4

tree5

19

Learning

M. Malinowski | Question Answering

Natural Language Understanding

14

Learning Dependency-Based Compositional Semantics

Percy Liang

UC Berkeley
pliang@cs.berkeley.edu

Michael I. Jordan

UC Berkeley
jordan@cs.berkeley.edu

Dan Klein

UC Berkeley
klein@cs.berkeley.edu

Abstract

Compositional question answering begins by
mapping questions to logical forms, but train-
ing a semantic parser to perform this mapping
typically requires the costly annotation of the
target logical forms. In this paper, we learn
to map questions to answers via latent log-
ical forms, which are induced automatically
from question-answer pairs. In tackling this
challenging learning problem, we introduce a
new semantic representation which highlights
a parallel between dependency syntax and effi-
cient evaluation of logical forms. On two stan-
dard semantic parsing benchmarks (GEO and
JOBS), our system obtains the highest pub-
lished accuracies, despite requiring no anno-
tated logical forms.

1 Introduction

What is the total population of the ten largest cap-
itals in the US? Answering these types of complex
questions compositionally involves first mapping the
questions into logical forms (semantic parsing). Su-
pervised semantic parsers (Zelle and Mooney, 1996;
Tang and Mooney, 2001; Ge and Mooney, 2005;
Zettlemoyer and Collins, 2005; Kate and Mooney,
2007; Zettlemoyer and Collins, 2007; Wong and
Mooney, 2007; Kwiatkowski et al., 2010) rely on
manual annotation of logical forms, which is expen-
sive. On the other hand, existing unsupervised se-
mantic parsers (Poon and Domingos, 2009) do not
handle deeper linguistic phenomena such as quan-
tification, negation, and superlatives.

As in Clarke et al. (2010), we obviate the need
for annotated logical forms by considering the end-
to-end problem of mapping questions to answers.
However, we still model the logical form (now as a
latent variable) to capture the complexities of lan-
guage. Figure 1 shows our probabilistic model:

(parameters) (world)

✓ w

x

z y

(question) (logical form) (answer)

state with the
largest area

x1x1

1

1

cc

argmax

area

state

⇤⇤ Alaska

z ⇠ p✓(z | x)

y = JzKw

Semantic Parsing Evaluation

Figure 1: Our probabilistic model: a question x is
mapped to a latent logical form z, which is then evaluated
with respect to a world w (database of facts), producing
an answer y. We represent logical forms z as labeled
trees, induced automatically from (x, y) pairs.

We want to induce latent logical forms z (and pa-
rameters ✓) given only question-answer pairs (x, y),
which is much cheaper to obtain than (x, z) pairs.

The core problem that arises in this setting is pro-
gram induction: finding a logical form z (over an
exponentially large space of possibilities) that pro-
duces the target answer y. Unlike standard semantic
parsing, our end goal is only to generate the correct
y, so we are free to choose the representation for z.
Which one should we use?

The dominant paradigm in compositional se-
mantics is Montague semantics, which constructs
lambda calculus forms in a bottom-up manner. CCG
is one instantiation (Steedman, 2000), which is used
by many semantic parsers, e.g., Zettlemoyer and
Collins (2005). However, the logical forms there
can become quite complex, and in the context of
program induction, this would lead to an unwieldy
search space. At the same time, representations such
as FunQL (Kate et al., 2005), which was used in

Freebase knowledge graph

BarackObama

Person

Type

Politician

Profession

1961.08.04

DateOfBirth

HonoluluPlaceOfBirth

Hawaii

ContainedBy

City

Type

UnitedStates

ContainedBy

USState

Type

Event8

Marriage

MichelleObama

Spouse

Type

Female
Gender

1992.10.03

StartDate

Event3
PlacesLived

Chicago

Location

Event21

PlacesLived

Location

ContainedBy

41M entities (nodes)

19K properties (edge labels)

596M assertions (edges)

10

Bridging 1: two unaries

Type.University

HonorRecepient

BarackObama

Which college did Obama go to ?

alignment

alignment

bridging

Type.University u Education.Institution.BarackObama

features

br-popularity :11.37

br-two-unaries : 1

br-education.institution: 1

19

Category Description
Alignment Log of # entity pairs that occur with the

phrase r1 (|F(r1)|)
Log of # entity pairs that occur with the
logical predicate r2 (|F(r2)|)
Log of # entity pairs that occur with both
r1 and r2 (|F(r1) \ F(r2)|)
Whether r2 is the best match for r1 (r2 =

argmax

r

|F(r1) \ F(r)|)
Lexicalized Conjunction of phrase w and predicate z

Text similarity Phrase r1 is equal/prefix/suffix of s2
Phrase overlap of r1 and s2

Bridging Log of # entity pairs that occur with bridg-
ing predicate b (|F(b)|)
Kind of bridging (# unaries involved)
The binary b injected

Composition # of intersect/join/bridging operations
POS tags in join/bridging and skipped
words
Size of denotation of logical form

Table 1: Full set of features. For the alignment and text sim-
ilarity, r1 is a phrase, r2 is a predicate with Freebase name s2,
and b is a binary predicate with type signature (t1, t2).

bipartite graph with left nodes R
1

and right nodes
R

2

(Figure 3). We add an edge (r

1

, r

2

) if (i) the
type signatures of r

1

and r

2

match7 and (ii) their ex-
tensions have non-empty overlap (F(r

1

)\F(r

2

) 6=
;). Our final graph contains 109K edges for binary
predicates and 294K edges for unary predicates.

Naturally, non-zero overlap by no means guaran-
tees that r

1

should map to r

2

. In our noisy data,
even “born in” and Marriage.EndDate co-occur 4
times. Rather than thresholding based on some cri-
terion, we compute a set of features, which are used
by the model downstream in conjunction with other
sources of information.

We compute three types of features (Table 1).
Alignment features are unlexicalized and measure
association based on argument overlap. Lexicalized
features are standard conjunctions of the phrase w

and the logical form z. Text similarity features com-
pare the (untyped) phrase (e.g., “born”) to the Free-
base name of the logical predicate (e.g., “People
born here”): Given the phrase r

1

and the Freebase
name s

2

of the predicate r

2

, we compute string sim-
ilarity features such as whether r

1

and s

2

are equal,

7Each Freebase property has a designated type signa-
ture, which can be extended to composite predicates, e.g.,
sig(Marriage.StartDate) = (Person,Date).

as well as some other measures of token overlap.

3.2 Bridging
While alignment can cover many predicates, it is un-
reliable for cases where the predicates are expressed
weakly or implicitly. For example, in “What govern-
ment does Chile have?”, the predicate is expressed
by the light verb have, in “What actors are in Top
Gun?”, it is expressed by a highly ambiguous prepo-
sition, and in “What is Italy money?” [sic], it is
omitted altogether. Since natural language doesn’t
offer much help here, let us turn elsewhere for guid-
ance. Recall that at this point our main goal is to
generate a manageable set of candidate logical forms
to be scored by the log-linear model.

In the first example, suppose the phrases “Chile”
and “government” are parsed as Chile and
Type.FormOfGovernment, respectively, and we hy-
pothesize a connecting binary. The two predicates
impose strong type constraints on that binary, so we
can afford to generate all the binary predicates that
type check (see Table 2). More formally, given two
unaries z

1

and z

2

with types t
1

and t

2

, we generate a
logical form z

1

u b.z

2

for each binary b whose type
signature is (t

1

, t

2

). Figure 1 visualizes bridging of
the unaries Type.University and Obama.

Now consider the example “What is the
cover price of X-men?” Here, the binary
ComicBookCoverPrice is expressed explicitly, but
is not in our lexicon since the language use is rare.
To handle this, we allow bridging to generate a bi-
nary based on a single unary; in this case, based on
the unary X-Men (Table 2), we generate several bina-
ries including ComicBookCoverPrice. Generically,
given a unary z with type t, we construct a logical
form b.z for any predicate b with type (⇤, t).

Finally, consider the question “Who did
Tom Cruise marry in 2006?”. Suppose we
parse the phrase “Tom Cruise marry” into
Marriage.Spouse.TomCruise, or more explicitly,
�x.9e.Marriage(x, e) ^ Spouse(e, TomCruise).
Here, the neo-Davidsonian event variable e is an
intermediate quantity, but needs to be further mod-
ified (in this case, by the temporal modifier 2006).
To handle this, we apply bridging to a unary and the
intermediate event (see Table 2). Generically, given
a logical form p

1

.p

2

.z

0 where p

2

has type (t

1

, ⇤),
and a unary z with type t, bridging injects z and

where z1 ∈ t1, z2 ∈ t2, b ∈ (t1, t2)
Bridging 2: event modifiers

Marriage.Spouse.Madonna Marriage.StartDate

Madonna Marriage.Spouse 2000

Who did Madonna marry in 2000

alignment alignment

joinjoin

bridging

Marriage.(Spouse.Madonna u StartDate.2000)

features

br-popularity:7.11

br-inject : 1

br-startdate : 1

20

Form 1 Form 2 Bridging
1 Type.FormOfGovernment Chile Type.FormOfGovernmentu GovernmentTypeOf.Chile
2 X-Men ComicBookCoverPriceOf.X-Men
3 Marriage.Spouse.TomCruise 2006 Marriage.(Spouse.TomCruise u StartDate.2006)

Table 2: Three examples of the bridging operation. The bridging binary predicate b is in boldface.

constructs a logical form p

1

.(p

2

.z

0 u b.z) for each
logical predicate b with type (t

1

, t).
In each of the three examples, bridging gener-

ates a binary predicate based on neighboring logi-
cal predicates rather than on explicit lexical material.
In a way, our bridging operation shares with bridg-
ing anaphora (Clark, 1975) the idea of establishing
a novel relation between distinct parts of a sentence.
Naturally, we need features to distinguish between
the generated predicates, or decide whether bridging
is even appropriate at all. Given a binary b, features
include the log of the predicate count log |F(b)|, in-
dicators for the kind of bridging, an indicator on the
binary b for injections (Table 1). In addition, we add
all text similarity features by comparing the Free-
base name of b with content words in the question.

3.3 Composition

So far, we have mainly focused on the generation of
predicates. We now discuss three classes of features
pertaining to their composition.

Rule features Each derivation d is the result of ap-
plying some number of intersection, join, and bridg-
ing operations. To control this number, we define
indicator features on each of these counts. This is in
contrast to the norm of having a single feature whose
value is equal to the count, which can only repre-
sent one-sided preferences for having more or fewer
of a given operation. Indicator features stabilize the
model, preferring derivations with a well-balanced
inventory of operations.

Part-of-speech tag features To guide the compo-
sition of predicates, we use POS tags in two ways.
First, we introduce features indicating when a word
of a given POS tag is skipped, which could capture
the fact that skipping auxiliaries is generally accept-
able, while skipping proper nouns is not. Second,
we introduce features on the POS tags involved in a
composition, inspired by dependency parsing (Mc-
Donald et al., 2005). Specifically, when we combine

logical forms z

1

and z

2

via a join or bridging, we
include a feature on the POS tag of (the first word
spanned by) z

1

conjoined with the POS tag corre-
sponding to z

2

. Rather than using head-modifier in-
formation from dependency trees (Branavan et al.,
2012; Krishnamurthy and Mitchell, 2012; Cai and
Yates, 2013; Poon, 2013), we can learn the appro-
priate relationships tailored for downstream accu-
racy. For example, the phrase “located” is aligned
to the predicate ContainedBy. POS features can de-
tect that if “located” precedes a noun phrase (“What
is located in Beijing?”), then the noun phrase is the
object of the predicate, and if it follows the noun
phrase (“Where is Beijing located?”), then it is in
subject position.

Note that our three operations (intersection, join,
and bridging) are quite permissive, and we rely on
features, which encode soft, overlapping rules. In
contrast, CCG-based methods (Kwiatkowski et al.,
2010; Kwiatkowski et al., 2011) encode the com-
bination preferences structurally in non-overlapping
rules; these could be emulated with features with
weights clamped to �1.

Denotation features While it is clear that learning
from denotations rather than logical forms is a draw-
back since it provides less information, it is less ob-
vious that working with denotations actually gives
us additional information. Specifically, we include
four features indicating whether the denotation of
the predicted logical form has size 0, 1, 2, or at least
3. This feature encodes presupposition constraints
in a soft way: when people ask a question, usually
there is an answer and it is often unique. This allows
us to favor logical forms with this property.

4 Experiments

We now evaluate our semantic parser empirically.
In Section 4.1, we compare our approach to Cai
and Yates (2013) on their recently released dataset
(henceforth, FREE917) and present results on a new

where p2 ∈ (t1, ∗), z ∈ t, b ∈ (t1, t)

M. Malinowski | Question Answering

Results

15

Dataset # examples # word types
GeoQuery 880 279
ATIS 5,418 936
FREE917 917 2,036
WEBQUESTIONS 5,810 4,525

Table 3: Statistics on various semantic parsing datasets. Our
new dataset, WEBQUESTIONS, is much larger than FREE917
and much more lexically diverse than ATIS.

questions for the final test, and performed all devel-
opment on the remaining 65%, which was further
divided into an 80%–20% split for training and val-
idation. To map entities, we built a Lucene index
over the 41M Freebase entities.

Table 3 provides some statistics about the new
questions. One major difference in the datasets is
the distribution of questions: FREE917 starts from
Freebase properties and solicits questions about
these properties; these questions tend to be tai-
lored to the properties. WEBQUESTIONS starts from
questions completely independent of Freebase, and
therefore the questions tend to be more natural and
varied. For example, for the Freebase property
ComicGenre, FREE917 contains the question “What
genre is Doonesbury?”, while WEBQUESTIONS for
the property MusicGenre contains “What music did
Beethoven compose?”.

The number of word types in WEBQUESTIONS is
larger than in datasets such as ATIS and GeoQuery
(Table 3), making lexical mapping much more chal-
lenging. On the other hand, in terms of structural
complexity WEBQUESTIONS is simpler and many
questions contain a unary, a binary and an entity.

In some questions, the answer provided by AMT
workers is only roughly accurate, because workers
are restricted to selecting answers from the Freebase
page. For example, the answer given by workers to
the question “What is James Madison most famous
for?” is “President of the United States” rather than
“Authoring the Bill of Rights”.

Results AMT workers sometimes provide partial
answers, e.g., the answer to “What movies does Tay-
lor Lautner play in?” is a set of 17 entities, out
of which only 10 appear on the Freebase page. We
therefore allow partial credit and score an answer us-
ing the F

1

measure, comparing the predicted set of
entities to the annotated set of entities.

System FREE917 WebQ.
ALIGNMENT 38.0 30.6
BRIDGING 66.9 21.2
ALIGNMENT+BRIDGING 71.3 32.9

Table 4: Accuracies on the development set under different
schemes of binary predicate generation. In ALIGNMENT, bi-
naries are generated only via the alignment lexicon. In BRIDG-
ING, binaries are generated through the bridging operation only.
ALIGNMENT+BRIDGING corresponds to the full system.

As a baseline, we omit from our system the main
contributions presented in this paper—that is, we
disallow bridging, and remove denotation and align-
ment features. The accuracy on the test set of this
system is 26.9%, whereas our full system obtains
31.4%, a significant improvement.

Note that the number of possible derivations for
questions in WEBQUESTIONS is quite large. In the
question “What kind of system of government does
the United States have?” the phrase “United States”
maps to 231 entities in our lexicon, the verb “have”
maps to 203 binaries, and the phrases “kind”, “sys-
tem”, and “government” all map to many different
unary and binary predicates. Parsing correctly in-
volves skipping some words, mapping other words
to predicates, while resolving many ambiguities in
the way that the various predicates can combine.

4.2 Detailed analysis

We now delve deeper to explore the contributions of
the various components of our system. All ablation
results reported next were run on the development
set (over 3 random splits).

Generation of binary predicates Recall that our
system has two mechanisms for suggesting binaries:
from the alignment lexicon or via the bridging op-
eration. Table 4 shows accuracies when only one or
both is used. Interestingly, alignment alone is better
than bridging alone on WEBQUESTIONS, whereas
for FREE917, it is the opposite. The reason for this
is that FREE917 contains questions on rare pred-
icates. These are often missing from the lexicon,
but tend to have distinctive types and hence can be
predicted from neighboring predicates. In contrast,
WEBQUESTIONS contains questions that are com-
monly searched for and focuses on popular predi-
cates, therefore exhibiting larger lexical variation.

•Web Queries - new large scale dataset with only question, answer pairs
•Google Suggest API is used to build a set of questions
•Questions are sent to AMT workers whose task is to answer on the

questions based on the Freebase - in total 5.810 QA pairs
•Examples:

•What character did Natalie Portman play in Star Wars?
•What kind of money to take to Bahamas?
•What did Edward Jenner do for living?

System Accuracy
Clarke et al. (2010) w/answers 73.2
Clarke et al. (2010) w/logical forms 80.4
Our system (DCS with L) 78.9
Our system (DCS with L

+) 87.2

Table 2: Results on GEO with 250 training and 250
test examples. Our results are averaged over 10 random
250+250 splits taken from our 600 training examples. Of
the three systems that do not use logical forms, our two
systems yield significant improvements. Our better sys-
tem even outperforms the system that uses logical forms.

predicate x in w (e.g., (Boston, Boston)), and
(iii) predicates for each POS tag in {JJ, NN, NNS}
(e.g., (JJ, size), (JJ, area), etc.).3 Predicates
corresponding to verbs and prepositions (e.g.,
traverse) are not included as overt lexical trig-
gers, but rather in the trace predicates L(✏).

We also define an augmented lexicon L

+ which
includes a prototype word x for each predicate ap-
pearing in (iii) above (e.g., (large, size)), which
cancels the predicates triggered by x’s POS tag. For
GEO, there are 22 prototype words; for JOBS, there
are 5. Specifying these triggers requires minimal
domain-specific supervision.

Results We first compare our system with Clarke
et al. (2010) (henceforth, SEMRESP), which also
learns a semantic parser from question-answer pairs.
Table 2 shows that our system using lexical triggers
L (henceforth, DCS) outperforms SEMRESP (78.9%
over 73.2%). In fact, although neither DCS nor
SEMRESP uses logical forms, DCS uses even less su-
pervision than SEMRESP. SEMRESP requires a lex-
icon of 1.42 words per non-value predicate, Word-
Net features, and syntactic parse trees; DCS requires
only words for the domain-independent predicates
(overall, around 0.5 words per non-value predicate),
POS tags, and very simple indicator features. In
fact, DCS performs comparably to even the version
of SEMRESP trained using logical forms. If we add
prototype triggers (use L

+), the resulting system
(DCS+) outperforms both versions of SEMRESP by
a significant margin (87.2% over 73.2% and 80.4%).

3We used the Berkeley Parser (Petrov et al., 2006) to per-
form POS tagging. The triggers L(x) for a word x thus include
L(t) where t is the POS tag of x.

System GEO JOBS
Tang and Mooney (2001) 79.4 79.8
Wong and Mooney (2007) 86.6 –
Zettlemoyer and Collins (2005) 79.3 79.3
Zettlemoyer and Collins (2007) 86.1 –
Kwiatkowski et al. (2010) 88.2 –
Kwiatkowski et al. (2010) 88.9 –
Our system (DCS with L) 88.6 91.4
Our system (DCS with L

+) 91.1 95.0

Table 3: Accuracy (recall) of systems on the two bench-
marks. The systems are divided into three groups. Group
1 uses 10-fold cross-validation; groups 2 and 3 use the in-
dependent test set. Groups 1 and 2 measure accuracy of
logical form; group 3 measures accuracy of the answer;
but there is very small difference between the two as seen
from the Kwiatkowski et al. (2010) numbers. Our best
system improves substantially over past work, despite us-
ing no logical forms as training data.

Next, we compared our systems (DCS and DCS+)
with the state-of-the-art semantic parsers on the full
dataset for both GEO and JOBS (see Table 3). All
other systems require logical forms as training data,
whereas ours does not. Table 3 shows that even DCS,
which does not use prototypes, is comparable to the
best previous system (Kwiatkowski et al., 2010), and
by adding a few prototypes, DCS+ offers a decisive
edge (91.1% over 88.9% on GEO). Rather than us-
ing lexical triggers, several of the other systems use
IBM word alignment models to produce an initial
word-predicate mapping. This option is not avail-
able to us since we do not have annotated logical
forms, so we must instead rely on lexical triggers
to define the search space. Note that having lexical
triggers is a much weaker requirement than having
a CCG lexicon, and far easier to obtain than logical
forms.

Intuitions How is our system learning? Initially,
the weights are zero, so the beam search is essen-
tially unguided. We find that only for a small frac-
tion of training examples do the K-best sets contain
any trees yielding the correct answer (29% for DCS
on GEO). However, training on just these exam-
ples is enough to improve the parameters, and this
29% increases to 66% and then to 95% over the next
few iterations. This bootstrapping behavior occurs
naturally: The “easy” examples are processed first,
where easy is defined by the ability of the current

•Examples:
•How big is Texas?
•How many states have a city  

named Springfield?
•Which rivers run through states  

bordering New Mexico,?

M. Malinowski | Question Answering

Outline

16

State-of-the-art

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

Challenges

Natural Language Understanding!

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}

^ y = GB ^ in-rel(y, z) ^ z = NC
What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i

)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under �  0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

Two extremes on language understanding!

Queen

King

M. Malinowski | Question Answering

Two extremes on the language understanding

17

Learning Dependency-Based Compositional Semantics

Percy Liang

UC Berkeley
pliang@cs.berkeley.edu

Michael I. Jordan

UC Berkeley
jordan@cs.berkeley.edu

Dan Klein

UC Berkeley
klein@cs.berkeley.edu

Abstract

Compositional question answering begins by
mapping questions to logical forms, but train-
ing a semantic parser to perform this mapping
typically requires the costly annotation of the
target logical forms. In this paper, we learn
to map questions to answers via latent log-
ical forms, which are induced automatically
from question-answer pairs. In tackling this
challenging learning problem, we introduce a
new semantic representation which highlights
a parallel between dependency syntax and effi-
cient evaluation of logical forms. On two stan-
dard semantic parsing benchmarks (GEO and
JOBS), our system obtains the highest pub-
lished accuracies, despite requiring no anno-
tated logical forms.

1 Introduction

What is the total population of the ten largest cap-
itals in the US? Answering these types of complex
questions compositionally involves first mapping the
questions into logical forms (semantic parsing). Su-
pervised semantic parsers (Zelle and Mooney, 1996;
Tang and Mooney, 2001; Ge and Mooney, 2005;
Zettlemoyer and Collins, 2005; Kate and Mooney,
2007; Zettlemoyer and Collins, 2007; Wong and
Mooney, 2007; Kwiatkowski et al., 2010) rely on
manual annotation of logical forms, which is expen-
sive. On the other hand, existing unsupervised se-
mantic parsers (Poon and Domingos, 2009) do not
handle deeper linguistic phenomena such as quan-
tification, negation, and superlatives.

As in Clarke et al. (2010), we obviate the need
for annotated logical forms by considering the end-
to-end problem of mapping questions to answers.
However, we still model the logical form (now as a
latent variable) to capture the complexities of lan-
guage. Figure 1 shows our probabilistic model:

(parameters) (world)

✓ w

x

z y

(question) (logical form) (answer)

state with the
largest area

x1x1

1

1

cc

argmax

area

state

⇤⇤ Alaska

z ⇠ p✓(z | x)

y = JzKw

Semantic Parsing Evaluation

Figure 1: Our probabilistic model: a question x is
mapped to a latent logical form z, which is then evaluated
with respect to a world w (database of facts), producing
an answer y. We represent logical forms z as labeled
trees, induced automatically from (x, y) pairs.

We want to induce latent logical forms z (and pa-
rameters ✓) given only question-answer pairs (x, y),
which is much cheaper to obtain than (x, z) pairs.

The core problem that arises in this setting is pro-
gram induction: finding a logical form z (over an
exponentially large space of possibilities) that pro-
duces the target answer y. Unlike standard semantic
parsing, our end goal is only to generate the correct
y, so we are free to choose the representation for z.
Which one should we use?

The dominant paradigm in compositional se-
mantics is Montague semantics, which constructs
lambda calculus forms in a bottom-up manner. CCG
is one instantiation (Steedman, 2000), which is used
by many semantic parsers, e.g., Zettlemoyer and
Collins (2005). However, the logical forms there
can become quite complex, and in the context of
program induction, this would lead to an unwieldy
search space. At the same time, representations such
as FunQL (Kate et al., 2005), which was used in

Queen

King

T. Mikolov, et. al. “Linguistic Regularities in Continuous Space Word
Representations” NAACL 2013

?

