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Why attention”
| ongterm memories - attending to memories
» Dealing with gradient vanishing problem

e [Xxceeding limitations of a global representation
»  Attending/focusing to smaller parts of data

- patches in images

- words or phrases in sentences

e Decoupling representation from a problem
»  Different problems required different sizes of representations

- LSTM with longer sentences requires larger vectors

e (Overcoming computational limits for visual data
» Focusing only on the parts of images
»  Scalability independent of the size of images

e Adds some interpretability to the models (error inspection)

M. Malinowski
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Motivation and task

e New class of networks that combine inference with long-term

memories
» |LSTM is a subclass

» But the class is much broader

® The long-term memories

can be read from or written to

LSTM Unit

'I_

Vi
h,
Cy4

Forget Gate

» Long-term memories == Knowledge base

»  We want to store information

»  We want to retrieve information

Story (2: 2 supporting facts) Support| Hop 1 Hop 2 | Hop 3
John dropped the milk. 0.06 0.00 0.00
John took the milk there. yes 0.88 1.00 0.00
Sandra went back to the bathroom. 0.00 0.00 0.00
John moved to the hallway. yes 0.00 0.00 1.00
Mary went back to the bedroom. 0.00 0.00 0.00

Where is the milk? Answer: hallway Prediction: hallway

M. Malinowski




IGOR
e Components (IGOR)

I component: Component [ can make use of standard pre-processing, e.g., parsing, coreference
and entity resolution for text inputs. It could also encode the input into an internal feature represen-
tation, e.g., convert from text to a sparse or dense feature vector.

G component: The simplest form of G is to store I (x) in a “slot” in the memory:

where S(.) is a function selecting the slot. That is, G updates the index S(x) of m, but all other

More sophisticated versions can update all memories based on a new evidence.
If memory is huge, we can organize this memory differently according to S(.) (organize memories according to topics).
The selection function S can also be responsible for ‘forgetting’ by replacing the current memories.

O and R components: The O component is typically responsible for reading from memory and
performing inference, e.g., calculating what are the relevant memories to perform a good response.
The R component then produces the final response given O. For example in a question answering
setup O finds relevant memories, and then R produces the actual wording of the answer, e.g., R
could be an RNN that is conditioned on the output of O. Our hypothesis is that without conditioning
on such memories, such an RNN will perform poorly.

1. Convert z to an internal feature representation /().
2. Update memories m; given the new input: m; = G(m,, I(z), m), Vi.
3. Compute output features o given the new input and the memory: o = O(I(x), m).

4. Finally, decode output features o to give the final response: r = R(0).

f Il p N M. Malinowski °
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MemNN - training
e Supervision with the supporting sentences

o Max-margin Ioss

> max (0,7 — so(x @+50 @+

f#fi

> max(0,v — so(|lz, m,, @—I—SO T mol]@)—l—
Fr#fs

E max((),v _ SR([xv m017m02]7 T) T SR([xv m017m02]7 f]))
r£r

» ‘Bad’ sentences are sampled for the speed reason

e Additional ‘tricks’

»  Segmenter to decides when a sentence should e written to
» Time stamps
»  Dealing with unknown words

M. Malinowski




—nd-to-end Memory Networks
e Solves the severe limitation of Memory Network

»  Supervision of whether a sentence is important or not

e |f we transform the separated steps of the memory network
iInto an end-to-end formulation we could use the error signal
form the task to train the whole network

o |GOR

» | - Content-based addressing

m; = g ACEij r; = {xi1, Tio, ooy Tin | U = Zy BQJ question vector (
- .

» O - 'Soft’ attention mechanism while reading the memory
p; = Softmax(u’m;) = Softmax (¢’ B Z Az;i).

0= Zp”&c% — y:y:pzc% Ci — ZCZBZJ J
» R- a = Softmax(W (o + u))

M. Malinowski



—nd-to-end Memory Networks

Predicted
@) >@—> W >m e\nswer
S, a
| 4 J3 L
Sum A u S
( \
Embedding C o — :
( ' g
f_______\ - mZ:ZAZCZ]
P ;< probabilities of the compatibility (% j
Sentences [ T 5 [ [T 11 [}
X Softmax A g T
P N p; = Softmax(u” m;)
\ J
_ c; = E Cz;j
K _g 7 (]
> m. ]
Embedding A * =
0 = E DiCi
u i
EmbeddingB| § — (I I)
Embedding of sentence i J a Softmax W(O + u)
probability of compatibility Question I
between memory j and question q q We add embedded question
via joint embedding to exploit possible
| | answers in the questions.

G
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—nd-to-end Memory Networks

W1}

A

a

Predicted
73 Answer
u2

1. Adjacent: the output embedding for one layer is the input embedding for the one above,

ie. ATl = COF,

2. Layer-wise (RNN): the input and output embeddings are the same across different layers,

ie. Al=A2=A3and C! = C? = C5.

Ug+1 = Hug + og

M. Malinowski
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—nd-to-end Memory Networks

Baseline MemN2N
Strongly PE I hop 2 hops 3 hops PE PE LS

Supervised LSTM MemNN PE LS PE LS PE LS PE LS LS RN LW
Task MemNN [21] [21] WSH BoW PE LS RN joint joint joint joint joint
I: 1 supporting fact 0.0 50.0 0.1 0.6 0.1 0.2 0.0 0.8 0.0 0.1 0.0 0.1
2: 2 supporting facts 0.0 80.0 42.8 17.6 21.6 12.8 8.3 62.0 15.6 14.0 11.4 18.8
3: 3 supporting facts 0.0 80.0 76.4 71.0 64.2 58.8 40.3 76.9 31.6 33.1 219 31.7
4: 2 argument relations 0.0 39.0 40.3 32.0 3.8 11.6 2.8 22.8 2.2 5.7 13.4 17.5
5: 3 argument relations 2.0 30.0 16.3 18.3 14.1 15.7 13.1 11.0 13.4 14.8 14.4 12.9
6: yes/no questions 0.0 52.0 51.0 8.7 7.9 8.7 7.6 7.2 2.3 3.3 2.8 2.0
7: counting 15.0 51.0 36.1 23.5 21.6 20.3 17.3 15.9 25.4 17.9 18.3 10.1
8: lists/sets 9.0 55.0 37.8 11.4 12.6 12.7 10.0 13.2 11.7 10.1 9.3 6.1
9: simple negation 0.0 36.0 35.9 21.1 23.3 17.0 13.2 5.1 2.0 3.1 1.9 1.5
10: indefinite knowledge 2.0 56.0 68.7 22.8 17.4 18.6 15.1 10.6 5.0 6.6 6.5 2.6
11: basic coreference 0.0 38.0 30.0 4.1 4.3 0.0 0.9 8.4 1.2 0.9 0.3 3.3
12: conjunction 0.0 26.0 10.1 0.3 0.3 0.1 0.2 0.4 0.0 0.3 0.1 0.0
13: compound coreference 0.0 6.0 19.7 10.5 9.9 0.3 0.4 6.3 0.2 1.4 0.2 0.5
14: time reasoning 1.0 73.0 18.3 1.3 1.8 2.0 1.7 36.9 8.1 8.2 6.9 2.0
15: basic deduction 0.0 79.0 64.8 24.3 0.0 0.0 0.0 46.4 0.5 0.0 0.0 1.8
16: basic induction 0.0 77.0 50.5 52.0 52.1 1.6 1.3 47.4 51.3 3.5 2.7 51.0
17: positional reasoning 35.0 49.0 50.9 45.4 50.1 49.0 51.0 444 41.2 44.5 40.4 42.6
18: size reasoning 5.0 48.0 51.3 48.1 13.6 10.1 11.1 9.6 10.3 9.2 9.4 9.2
19: path finding 64.0 92.0 100.0 89.7 87.4 85.6 82.8 90.7 89.9 90.2 88.0 90.6
20: agent’s motivation 0.0 9.0 3.6 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2
Mean error (%) 6.7 51.3 40.2 25.1 20.3 16.3 13.9 25.8 15.6 13.3 12.4 15.2
Failed tasks (err. > 5%) 4 20 18 15 13 12 11 17 11 11 11 10
On 10k training data
Mean error (%) 3.2 36.4 39.2 15.4 94 7.2 6.6 24.5 10.9 7.9 7.5 11.0
Failed tasks (err. > 5%) 2 16 17 9 6 4 4 16 7 6 6 6

Table 1: Test error rates (%) on the 20 QA tasks for models using 1k training examples (mean

test errors for 10k training examples are shown at the bottom).

weight tying 1s used); joint = joint training on all tasks (as opposed to per-task training).

M. Malinowski

Key: BoW = bag-of-words
representation; PE = position encoding representation; LS = linear start training; RN = random
injection of time index noise; LW = RNN-style layer-wise weight tying (if not stated, adjacent
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MemNN - architecture

MemNN components
» | - BoW embedding

» G - S(X) returns the next empty memory slot

» O - finds k supporting memories given x (up to 2 hops here)

- 0_1=0_1(x,m) = argmax s(x, m_li), s is a similarity measure

- 0_2 =0_2(x,m) = argmax s([x,m_{o_1}], m_i)

- final output is [x, m_{o_1}, m_{o_2}]

» R generates single word answers r = argmax,, .y sr([z, m,,, m,,], w)
» Forsand S_R s(z,y) = CIDw(:B)TUTUCDy(y)

Story (2: 2 supporting facts) Support| Hop 1 Hop 2 | Hop 3
John dropped the milk. 0.06 0.00 0.00
John took the milk there. yes 0.88 - 0.00
Sandra went back to the bathroom. 0.00 0.00 0.00
John moved to the hallway. yes 0.00 0.00 -
Mary went back to the bedroom. 0.00 0.00 0.00
Where is the milk? Answer: hallway Prediction: hallway

M. Malinowski
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—nd-to-end Memory Networks

A
CAN_
|

Story (1: 1 supporting fact) Support| Hop1 | Hop 2 | Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03
Mary travelled to the hallway. 0.00 0.00 0.00
John went to the bedroom. 0.37 0.02 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96
Mary went to the office. 0.01 0.00 0.00
Where is John? Answer: bathroom Prediction: bathroom

Story (16: basic induction) Support| Hop1 | Hop 2 | Hop 3
Brian is a frog. yes 0.00 0.98 0.00
Lily is gray. 0.07 0.00 0.00
Brian is yellow. yes 0.07 0.00 1.00
Julius is green. 0.06 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00
What color is Greg? Answer: yellow Prediction: yellow

Story (2: 2 supporting facts) Support| Hop 1 Hop2 | Hop 3
John dropped the milk. 0.06 0.00 0.00
John took the milk there. yes 0.88 1.00 0.00
Sandra went back to the bathroom. 0.00 0.00 0.00
John moved to the hallway. yes 0.00 0.00 1.00
Mary went back to the bedroom. 0.00 0.00 0.00
Where is the milk? Answer: hallway Prediction: hallway

Story (18: size reasoning) Support| Hop 1 Hop2 | Hop 3
The suitcase is bigger than the chest. yes 0.00 0.88 0.00
The box is bigger than the chocolate. 0.04 0.05 0.10
The chest is bigger than the chocolate. yes 0.17 0.07 0.90
The chest fits inside the container. 0.00 0.00 0.00
The chest fits inside the box. 0.00 0.00 0.00

Does the suitcase fit in the chocolate? Answer: no Prediction: no

M. Malinowski
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Neural Turing Machines

e [xtend the capabilities of neural nets by coupling them to
external memory resources

» enrich RNN by a large addressable memory
» Differentiable model of attention

e |nfers simple algorithms like copying

External Input External Output Similar to standard Neural Nets,
Controller interacts with the external
e NG world via input/output vectors
' Controller |
Read Heads Write Heads
Memory

14
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Neural Turing Machines

Targets

Outputs

Targets

Outputs

. t

—
3
@

Figure 4: NTM Generalisation on the Copy Task. The four pairs of plots in the top row
depict network outputs and corresponding copy targets for test sequences of length 10, 20, 30,
and 50, respectively. The plots in the bottom row are for a length 120 sequence. The network
was only trained on sequences of up to length 20. The first four sequences are reproduced with

Targets

Outputs

Targets

Outputs

i M. MalinowsSTM
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Memory Networks - summary
e Memory Networks that broadens LSTM class

» Networks with long-term dependencies

» Attention ‘distribution’ over data points
»  So far specific architectures tailored to QA task

»  Some empirical evidence that the gradient vanishing problem or
capacity limitations can be overcome by having an external memory

Predicted
o :@—> W Answer
Y 21 a
3
Sum A u £
4 \
Embedding C o
( > C; S
4 \ -
. =
Sentences | plll m &
BEOUUHUUIIE softmax A Z
4 \
\ J
) > omy 2
Embedding A
u
Embedding
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Show, attend and tell

'l'l H“\'
il 1 H il

flying over body water

Attend to parts of the iImage

M. Malinowski



Motivation (Show, attend and tell ...)

Motivation

Increase the capacity of the encoder that compress the input into a

single vector
3

LI O O 0000
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[1] D. Bahdanu et. al. “Neural Machine Translation by Jointly Learning to Align and Translate”

M. Malinowski

18




Motivation (Show, attend and tell ...)
e Motivation

» Increase the capacity of the encoder that compress the input into a
single vector

» Increase interpretabllity - errors inspection

e [wo attention mechanism
»  ‘Soft’ deterministic trained via backprop
» ‘Hard’ stochastic trained via variational lower bound

e [ anguage generation task

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.

M. Malinowski 19



—xtension of LSTM via the context vector

e Extract L D-dimensional annotations « = {a;,...,ar}, a, € RP

» Lower convolutional layer to have the correspondence between the
feature vectors and portions of the 2-D image

(;.t\ { d \ Eyt_l . .
t | — o Toimann | i (1) E - emb_eddlng matrix
Ot o ’ ~ y - captions
\gt ) \tanh ) h - previous hidden state
. Z - context vector, a dynamic
¢t =tOc 1 +1LOg (2) representation of the relevant
h; = o; ® tanh(c,). (3) part of the image input at time t

eri = fatt(as, hy_1)
_ exp(es)
> 1 explew)

z: = ¢ ({ai}, {ai}) ¢ is the ‘attention’ (‘focus’) function - ‘soft’ / ‘hard’

p(yela,yi™h) o exp(Lo(Eys—1 + Lyhy + L.2,)) |

077

fatt(a;, hy_1) is MLP conditioned on the
previous hidden state

20
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Hard attention

We have two sequences

,l’that runs over localizations et :fatt(aia ht—l)
t’ that runs over words 7, — gb ({a-} {a.})
| N eXp(eti) t 1 J 7
Stochastic decisions are Oty =7
discrete here, so derivatives Z k—1 GXP(Gtk)
are zero.

Loss is a variational lower bound on
the marginal log-likelihood

:ZP(S ‘ a) 1ng(y | Sva) it — St,i A -
<log » p(s|a)p(y]|s,a) OLs _ Ologp(y | s,a)
ZS: oW Z;p (s 1) ow
=logp(y | a) 0logp(s | a)
N . logp(y | s,a)
Due to Jensen’s inequality E[log(X)] =< log(E[X]) oW
§, ~ Multinoulliz ({a;}) oLs 1 Ologp(y | 5", a)
ow =N ; ow

N
e Z (9logp (¥ ‘ s" )+
TN Ar(logp(y | 5",a) — D) + Ae
B ’ ow ow

log p(y | 5", a)mogp (5" | a)] To reduce the estimator variance, entropy term HJs]
ow and bias are added [1,2]

[1] J. Ba et. al. “Multiple object recognition with visual attention”
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

éj’ ini p ik M. Malinowski s
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Soft attention

AR E St,i A
i

* Instead of making hard decisions, we

take the expected context vector
p(st |a) Z Qi A The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

K

Theoretical arguments

» (s, |0) ¢ ] equals to computing h, using a single forward prop with the expected context vector s, |q)|2¢]

- Normalized Weighted Geometric Mean approximation [1] NWGMp(y: = k | a)] =~ Elp(y, = k | a)]
* Finally

NWGMp(ys = k | a)] = L &Pk exXp(Ep(s,|a) [121,])
Z H eXp(nw )p(s“_1|a) Zj eXp(Ep(St|a) [nt,j])

En:| = L,(Ey;—1 + LyElh;| + L.E|z,])

[1] P. Baldi et. al. “The dropout learning algorithm”
22
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Show, attend and tell - remir

Key design choices

- Small conv kernels (3x3)

« Small stride=1, no information
loss

* RelL,U

* 5 max-pools (2x reduction)

- 3 fully-connected (FC) layers

Why 3x3 layers?

- stacked have large receptive
fields

* more non-linearities

* less parameters

Training

* logistic regression

- mini-batch sgd with momentum
- fast convergence (74 epochs)

« most layers are initialized with
Gaussian, other (FC layers and
top conv 4) with 11 layer net

image

| conv-64

| conv-64

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

der of VGG

convolution for
the next layer (3x3)

%))
A
RERRE

1%t 3x3 conv. layer

D 2"d 3x3 conv. layer

Multi-scale training

- randomly cropped
Inputs

» scale jittering

256 224
N=2256
384 224
N=384

e Standard jittering

* random horizontal flips
* random RGB shift

[1] K. Simonyan et. al. “Very Deep ConvNets for Large-Scale Image Recognition”

M. Malinowski
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How soft/hard attention works

Word

Recurrent

Attention

f=(a, man, 1s, jumping, into, a, lake, .)

=2

=

= U;

3

%)

]

s

N

% . Attention
(o .
s a.: T weight
o

)

=

Convolutional Neural Network

J

Adthotation
Vectors

h.

M. Malinowski
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How soft/hard attention works

Sample regions of attention
“-0.00.0 | _ > logp(y | 2)

Aflymg over a body of water. /ll i 2¢{0.0.0.0!

€))
—
II\)

-

ol =
conv-512 @ —
conv-512 ‘ o 2
®
maxpool —p ‘ 8 -
ASS

14x14x512 = ‘ ”

196 x 512 (L x D)
annotations ‘ ' N
O-a; \S‘oft

Lo=Y p(s|a)logp(y | s,a)

S A~
A variational lower bound of 2 =<|mrpspipss|, | @OOQO®| >
maximum likelihood Computes the expected attention

il P i M. Malinowski 25



Training
e Adam for Flickr30
e /GG to produce t

</MS COCO, RM-SProp on Flickr8k

ne annotations a_i pertained on ImageNet

without fine-tuning (19 layers)
»  14x14x512 feature map of the fourth convolutional layer

conv-512

»  Flattened 196 x 512 (L x D) annotation (encoder) conv-512

maxpool

» small kernels (3x3) with stride 1 (no loss of information)

e Mini-batches are built so that they data with captions of the
same length are taken

e MS COCO + Soft
of training

attention on NVIDIA Titan Black <= 3 days

e Dropout + early stopping on BLLEU scores

e (Codein Theano

M. Malinowski 26




Qualitative results

(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)
flying body water .

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
bird

Figure 3. Exarnples of attendmg to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

.'\ n

A stop sign is on a road with a
mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

&y LL p i M. Malinowski 21




Qualitative results

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

bird flying over body water

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.

\ Inrpii M. Malinowski 28




Quantitative results

Human Automatic
Model M1 M2 BLEU CIDEr
Human 0.638 0.675 0471 0.91
Google™ 0.273  0.317 0.587 0.946
MSR*® 0.268 0.322 0.567 0.925
Attention-based™ 0.262  0.272 0.523 0.878
Captivator® 0.250 0.301 0.601 0.937
Berkeley LRCN® | 0.246  0.268 0.534 0.891

M1 - humans preferred (or equal) the method over human annotation

M2 - turing test

M. Malinowski




Other applications

Applications

Machine Learning Translation

- D. Bahdanu et. al. “Neural machine translation by jointly learning to align and translate”
Make neural machine translation more robust to long sentences

Bidirectional recurrent neural network (BiRNN) as encoder N
Context vector is a concatenation of the forward and backward networks c: = [ht; it]
BiRNN is crucial as the context information from the whole sentence is important
Results comparable with the State-of-the-art SMT

Yi-r. W
Model BLEU | Rel. Improvement

Simple Enc—Dec 17.82 -
Attention-based Enc—Dec 28.45 +59.7%
Attention-based Enc—Dec (LV) 34.11 +90.7%
Attention-based Enc-Dec (LV)* 37.19 +106.0%

State-of-the-art SMT® 37.03 —

h, [T h [T hs ™ T hy English-to-French translation task

30
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Other applications

Applications

Video Description Generation
L. Yao et. al. “Describing videos by exploiting temporal structure”

« Two encoders

- Context set consists of per-frame context vectors, and attention mechanism that selects one of those vectors
for each output symbol being decoded - capturing the global temporal structure across frames

 3-D conv-net that applies local filters across spation-temporal dimensions working on motion statistics

- Both encoders are complementary

+Local+Global: A man and a woman are talking on the

A: Low-level Video Representation
15X15X120 crops

T=240

B: 3D Convolutional Networks

| 3d-convl ! 3d-conv2 ! 3dconv3 || FC4 ! softmax
| 3X3X3X128 |1 3X3X3X256 |f 3XININIS2 |1 2500 :
y Pool !i Pool ii Pool }idropout:i!dropout }

axax3 i1 3X3X3 i axaxae || H ;

! stride(1,1,2) ! Stride(1,1,2) H
REOSELNAY, | TESNRISSARAAIE | NRRNNRNS—— | |

Ref: A man and a woman ride a motorcycle

| E

-.

HOG

MBH

3-D conv-net

THE PERFORMANCE OF THE VIDEO DESCRIPTION GENERATION MODELS
ON YOUTUBE2TEXT AND MONTREAL DVS. (x) HIGHER THE BETTER.

(o) LOWER THE BETTER.

+Local+Global: Someone is frying a fish in a

Ref: A woman is frying food

@%lllljll
o

M. Malinowski

Youtube2Text Montreal DVS
Model METEOR*  Perplexity® | METEOR  Perplexity
Enc-Dec 0.2868 33.09 0.044 88.28
+ 3-D CNN 0.2832 33.42 0.051 84.41
+ Per-frame CNN 0.2900 27.89 .040 66.63
+ Both 0.2960 27.55 0.057 65.44
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Other applications
Applications

« Parsing-Grammar
- Machine Translation with a parsing-tree as a ‘target sentence’
- Learnt parsing algorithm performance matches state-of-the-art (domain-specific) parsers
+ O. Vinyals et. al. “Grammar as a foreign language”
- (Approximately) Solving combinatorial problems
« Decoder predicts which one of the source symbols/nodes should be chosen at each time step
- TSP
- Context set = cities in the input graph
- The attention mechanism choses cities
- Generalizes to any discrete optimization problem whose solution is a subset of the input symbols
+ O. Vinyals et. al. “Pointer networks”
- Speech Recognition
- Traditional approaches use Deep Nets for the acoustic part to establish a relationship between audio
(wavelength) and phonemes followed by HMM to map those into sentences
- J. Chorowski et. al. “Attention-based models for speech recognition”
- Encoder is a stacked BiRNN, which reads the input sequence of speech frames
- Context set is the concatenated hidden states of the top-level BiRNN
 Peculiarities (in contrast to the machine translation task)
- Significant difference in the input speech frames and output sequence of words
- Alignment between the input and output symbols is monotonic
« W. Chan et. al. “Listen, Attend and Spell”
- Listener - pyramidal RNN encoder that accepts filter bank spectra as input
« Speller - attention-based RNN decoder that emits characters as outputs
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So far ...
e Attention mechanism in Memory Networks

» Distribution over different data points
» Task is Question Answering about textual story
e Attention mechanism in Show, Attend, and Tell ...
» Visual attention as a normalized time-dependent linear map

f=(a, man, is, jumping, into, a, lake, .)

Predicted
o ;@-» W Answer
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3
Sum A u
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Recurrent Models of Visual Attention

e Ielelalel BIER
FERREERNR

Glimpse-driven mechanism
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Motivation
e Applying CNN is expensive

e Framework that
»  Selects a sequence of regions
»  Scales up independently of the image size
» 4 x fewer floating point operations than CNN

e Model is non-differentiable

» Reinforcement learning as a rescue
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Model
e Recurrent Attention Model (RAM)

H Retina representation fg (6’ g) | fg(@ g)
! Glimpse Sensor v |
g&O00O 18+ OO0
\ O hy | v Q his
N hei—s| O |— S | (O | S
H— Glimpse E Hg() 8 O | O
Sensor O O |
plt Ii.]) O>8 . S | .
X, 01 19 % 9T, gr _— falbd) | | JiOD | fa(0a) | | fiO)
O anawi imite
GI ot ) f(e ) g > 8/0 sensor ‘ l / ‘ l
impse Network : f,( 0, @ () @
action location @
network network
The network (agent) can actively Glimpse - a multi-resolution crop of the
control how to deploy its sensor iInput image

resources (choose the sensor location)
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Results

= '
1

KHIMIEAr

Glimpses deployed - 1st column shows the sequence of deployed glimpses, other columns show glimpses
deployed
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Dynamic environment

Sensor - agent receives a (partial) observation of the environment through bandwidth
limited sensor

Actions - deploy sensor via the sensor control, and perform an environment action

Reward - R = Y., ,r, e.g. 77 = lif the object is classified correctly for detection
GClimpse Coverage

Glimpse Histo

Individual Glimpses
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Dynamic environment - more games
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Model - objective
e Maximize expected reward under the policy m :=p (1, a;)i—)

T

J(0) == Ex, ZTt Y YT CLt lt, (lt | (l7 a)O:(t—l))

o Gradient With sampling (REINFORCE rule [1])
S‘S‘ Tt lty @t VW@ ((lta at) ’ (ljv aj)Or(t—l))

>

ag,l; ¢
Use samples How to sample from gradient?

/

VJ(H) — S‘ Y {[Tt(lh at)] V log (We) } Ty Because of (log =) = al
- — < > «—» L
Backprop  Sampling

e \ariance reduction technigques (bias normalization) [3]

t at,ly

e ‘Natural supervision’ - best actions are unknown and training
signal comes only through the reward function

e Explore (samples), exploit (backprop)

[1] R.J, Williams “Simple statistical gradient-following algorithm for connectionist reinforcement learning”
[2] N. de Freitas “Deep Learning Lecture 15”
[3] R. S. Sutton et. al. “Policy gradient methods for reinforcement learning with function approximation”
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Recurrent Models of Visual Attention - Results

M

Translated MNIST

(a) 28x28 MINIST

Model Error
FC, 2 layers (256 hiddens each) 1.35%
1 Random Glimpse, 8 x 8, 1 scale 42.85%
RAM, 2 glimpses, 8 x 8, 1 scale 6.27%
RAM, 3 glimpses, 8 x 8, 1 scale 2. 7%
RAM, 4 glimpses, 8 X 8, 1 scale 1.73%
RAM, 5 glimpses, 8 x 8, 1 scale 1.55%
RAM, 6 glimpses, 8 X 8, 1 scale 1.29%
RAM, 7 glimpses, 8 X 8, 1 scale 1.47%

(a) 60x60 Cluttered Translated MNIST

Cluttered Translated MNIST

(b) 60x60 Translated MNIST

Model Error

FC, 2 layers (64 hiddens each) 7.56%
FC, 2 layers (256 hiddens each) 3.7%

Convolutional, 2 layers 2.31%
RAM, 4 glimpses, 12 x 12, 3 scales 2.29%
RAM, 6 glimpses, 12 x 12, 3 scales 1.86%
RAM, 8 glimpses, 12 x 12, 3 scales 1.84%

(b) 100x100 Cluttered Translated MNIST

Model Error Model Error

FC, 2 layers (64 hiddens each) 28.96% Convolutional, 2 layers 16.51%

EC’ 2 llay?rs <12526lhiddens each) %%Z//O RAM, 4 glimpses, 12 x 12, 4 scales  14.95%
onvolutional, 2 layers .83% -

RAM, 4 glimpses, 12 x 12, 3 scales  7.1% Eﬁﬁ’ g gi?mpses’ g i g j Scaies 1 éggg"

RAM, 6 glimpses, 12 x 12, 3 scales 5.88% » © ZIMPSES, » & SCAlCS ' o

RAM, 8 glimpses, 12 x 12, 3 scales 5.23%

e‘_.."/‘
sATIHE) NN
05 A /

N

. |
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Multiple Object Recognition with Visual Attention
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DRAW - Generative model with visual attention

Reading MNIST
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Recognition

N .

Recognition - Rapid jumps (saccades?)

Time ——

Draw - Continuous transitions
(smooth pursuit?)
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Summary

Swlwiwlvl B IEKE
 PERFECRRE

""Attend to parts of the image”

Glimpse-driven mechanism
'\ mmp M. Malinowski 45
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